The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward...The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.展开更多
Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead t...Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead to energy loss.This study employs the classical trajectory Monte Carlo method to study the SI and SC processes of H_(2)O molecules using He^(2+) and C^(6+) projectiles in the energy range of 10 keV/u to 10 MeV/u.The total cross sections,single differential cross sections,impact parameter dependence of SI and SC,and fragmentation cross sections were investigated.Results illustrate that the cross section for SI is the highest when the projectile energy is close to the Bragg peak energy.When the projectile energy is below the Bragg peak energy,the ionized electrons in the forward direction dominate,and the removal of electrons can be associated with large impact parameters.As the projectile energy increases,the emission angle of the electrons gradually transitions from small angles(60°~120°)to large angles(60°~120°),and the removal of electrons is associated with small impact parameters.The energy distributions of the ionized electron are similar when the projectile energy is equal to,below or above the Bragg peak energy.The fragmentation cross sections after SI and SC in the energy range around the Bragg peak were also estimated.展开更多
Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al re...Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.展开更多
We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sectio...We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s^(2)(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.展开更多
Correction to:Nuclear Science and Techniques(2024)35:155 https://doi.org/10.1007/s41365-024-01481-7 In Eq.(2)of this article,the term'i'should be denoted as a subscript,the corrected equation should read N_(0)...Correction to:Nuclear Science and Techniques(2024)35:155 https://doi.org/10.1007/s41365-024-01481-7 In Eq.(2)of this article,the term'i'should be denoted as a subscript,the corrected equation should read N_(0)=σ(E)N_(t)QC_(kbeam)^(e^(-λt_(i)))∫_(0)^(t_(i))e^(λt)dt,(2)The original article has been corrected.展开更多
The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energ...The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.展开更多
We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loadin...We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.展开更多
This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section...This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.展开更多
In order to control the cross? link forces and the vibration frequencies of the test bed of the full channel gas within the allowable ranges, the analyses of forces and deformation of the test bed was done, for the v...In order to control the cross? link forces and the vibration frequencies of the test bed of the full channel gas within the allowable ranges, the analyses of forces and deformation of the test bed was done, for the variously restrained elastic movable frame and the rigid one, the vibration frequencies were computed respectively by means of the methods of mechanics of materials, elasticity and vibration mechanics, the cross link forces and the vibration frequencies of the test bed were tested. The results of theoretical computation comparatively approach the experimental results. The computational methods could be used to availably estimate the design parameters relevant to the test bed of the full channel gas.展开更多
The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture ...The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture events were detected using four C_(6)D_(6) detectors.The pulse-height weighting technique and double-bunch unfolding method based on Bayesian theory were used in the data analysis.Background deductions,normalization,and corrections were carefully considered to obtain reliable measurement results.The multilevel R-matrix Bayesian code SAMMY was used to extract the resonance parameters in the resolved resonance region(RRR).The average cross sections in the unresolved resonance region(URR)were obtained from 10 to 400 keV.The experimental results were compared with data from several evaluated libraries and previous experi-ments in the RRR and URR.The TALYS code was used to describe the average cross sections in the URR.The astrophysical Maxwell average cross sections(MACSs)of ^(79,81)Br from kT=5 to 100 keV were calculated over a sufficiently wide range of neutron energies.At a thermal energy of kT=30 keV,the MACS value for ^(79)Br 682±68 mb was in good agreement with the KADoNiS v1.0 recommended value.By contrast,the value of 293±29 mb for ^(81)Br was substantially higher than that of the evaluated database and the KADoNiS v1.0 recommended value.展开更多
基金funded by the State Grid Science and Technology Project“Research on Key Technologies for Prediction and Early Warning of Large-Scale Offshore Wind Power Ramp Events Based on Meteorological Data Enhancement”(4000-202318098A-1-1-ZN).
文摘The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.
基金supported in part by the National Natural Science Foundation of China(Nos.12105327 and 11775108)the Hunan Provincial Innovation Foundation For Postgraduate(No.QL20220210)the Advanced Energy Science and Technology Guangdong Laboratory.
文摘Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead to energy loss.This study employs the classical trajectory Monte Carlo method to study the SI and SC processes of H_(2)O molecules using He^(2+) and C^(6+) projectiles in the energy range of 10 keV/u to 10 MeV/u.The total cross sections,single differential cross sections,impact parameter dependence of SI and SC,and fragmentation cross sections were investigated.Results illustrate that the cross section for SI is the highest when the projectile energy is close to the Bragg peak energy.When the projectile energy is below the Bragg peak energy,the ionized electrons in the forward direction dominate,and the removal of electrons can be associated with large impact parameters.As the projectile energy increases,the emission angle of the electrons gradually transitions from small angles(60°~120°)to large angles(60°~120°),and the removal of electrons is associated with small impact parameters.The energy distributions of the ionized electron are similar when the projectile energy is equal to,below or above the Bragg peak energy.The fragmentation cross sections after SI and SC in the energy range around the Bragg peak were also estimated.
基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK 2022-04)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike,ZY22096024)+1 种基金the National Natural Science Foundation of China(12065003)Guangxi Key R&D Project(2023AB07029).
文摘Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.
基金Project supported by the Science and Engineering Research Board(SERB),New Delhi,India(Grant No.CRG/2022/001668).
文摘We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s^(2)(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.
文摘Correction to:Nuclear Science and Techniques(2024)35:155 https://doi.org/10.1007/s41365-024-01481-7 In Eq.(2)of this article,the term'i'should be denoted as a subscript,the corrected equation should read N_(0)=σ(E)N_(t)QC_(kbeam)^(e^(-λt_(i)))∫_(0)^(t_(i))e^(λt)dt,(2)The original article has been corrected.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
基金This work is supported by the National Natural Science Foundation of China(No.12375296)the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)+2 种基金the Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444,2020RC3054)the Youth Innovation Promotion Association CAS(No.2023014)the National Key Research and Development Plan(No.2022YFA1603303).
文摘The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92365208,11934002,and 11920101004)the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)+1 种基金the Science and Technology Major Project of Shanxi(Grant No.202101030201022)the Space Application System of China Manned Space Program。
文摘We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.
基金The research is supported by Project of National Natural Science Foundation of China(30571455)and National "948" Project(2005-4-62)
文摘This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.
文摘In order to control the cross? link forces and the vibration frequencies of the test bed of the full channel gas within the allowable ranges, the analyses of forces and deformation of the test bed was done, for the variously restrained elastic movable frame and the rigid one, the vibration frequencies were computed respectively by means of the methods of mechanics of materials, elasticity and vibration mechanics, the cross link forces and the vibration frequencies of the test bed were tested. The results of theoretical computation comparatively approach the experimental results. The computational methods could be used to availably estimate the design parameters relevant to the test bed of the full channel gas.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1832182,11875328,11761161001,and U2032137)the Natural Science Foundation of Guangdong Province,China(Nos.18zxxt65 and 2022A1515011184)+3 种基金the Science and Technology Development Fund,Macao SAR(Grant No.008/2017/AFJ)the Macao Young Scholars Program of China(No.AM201907)the China Postdoctoral Science Foundation(Nos.2016LH0045 and 2017M621573)the Fundamental Research Funds for the Central Universities(Nos.22qntd3101 and 2021qntd28).
文摘The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture events were detected using four C_(6)D_(6) detectors.The pulse-height weighting technique and double-bunch unfolding method based on Bayesian theory were used in the data analysis.Background deductions,normalization,and corrections were carefully considered to obtain reliable measurement results.The multilevel R-matrix Bayesian code SAMMY was used to extract the resonance parameters in the resolved resonance region(RRR).The average cross sections in the unresolved resonance region(URR)were obtained from 10 to 400 keV.The experimental results were compared with data from several evaluated libraries and previous experi-ments in the RRR and URR.The TALYS code was used to describe the average cross sections in the URR.The astrophysical Maxwell average cross sections(MACSs)of ^(79,81)Br from kT=5 to 100 keV were calculated over a sufficiently wide range of neutron energies.At a thermal energy of kT=30 keV,the MACS value for ^(79)Br 682±68 mb was in good agreement with the KADoNiS v1.0 recommended value.By contrast,the value of 293±29 mb for ^(81)Br was substantially higher than that of the evaluated database and the KADoNiS v1.0 recommended value.