期刊文献+
共找到609篇文章
< 1 2 31 >
每页显示 20 50 100
State of charge estimation of Li-ion batteries in an electric vehicle based on a radial-basis-function neural network 被引量:6
1
作者 毕军 邵赛 +1 位作者 关伟 王璐 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期560-564,共5页
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial... The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle. 展开更多
关键词 state of charge estimation BATTERY electric vehicle radial-basis-function neural network
在线阅读 下载PDF
Recovery of saturated signal waveform acquired from high-energy particles with artificial neural networks 被引量:4
2
作者 Yu Liu Jing-Jun Zhu +5 位作者 Neil Roberts Ke-Ming Chen Yu-Lu Yan Shuang-Rong Mo Peng Gu Hao-Yang Xing 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期30-39,共10页
Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi... Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics. 展开更多
关键词 Saturated signals artificial neural networks(ANNs) RECOVERY of signal waveform Generalized radial basis function Backpropagation neural network ELMAN neural network
在线阅读 下载PDF
Artificial neural network modeling of water quality of the Yangtze River system:a case study in reaches crossing the city of Chongqing 被引量:11
3
作者 郭劲松 李哲 《Journal of Chongqing University》 CAS 2009年第1期1-9,共9页
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod... An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models. 展开更多
关键词 water quality modeling Yangtze River artificial neural network back-propagation model radial basis functionmodel
在线阅读 下载PDF
INTERNET TRAFFIC DATA FLOW FORECAST BY RBF NEURAL NETWORK BASED ON PHASE SPACE RECONSTRUCTION 被引量:4
4
作者 陆锦军 王执铨 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期316-322,共7页
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n... Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy. 展开更多
关键词 chaos theory phase space reeonstruction Lyapunov exponent tnternet data flow radial basis function neural network
在线阅读 下载PDF
Generalization Capabilities of Feedforward Neural Networks for Pattern Recognition
5
作者 黄德双 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期192+184-192,共10页
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th... This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs. 展开更多
关键词 feedforward neural networks radial basis function networks multilayer perceptronnetworks generalization capability radar target classification
在线阅读 下载PDF
Rudder Roll Damping Autopilot Using Dual Extended Kalman Filter–Trained Neural Networks for Ships in Waves
6
作者 Yuanyuan Wang Hung Duc Nguyen 《Journal of Marine Science and Application》 CSCD 2019年第4期510-521,共12页
The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews,vessels,and cargoes;thus,it must be damped.This study presents the design of a rudder roll damping autopilot by utilizing th... The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews,vessels,and cargoes;thus,it must be damped.This study presents the design of a rudder roll damping autopilot by utilizing the dual extended Kalman filter(DEKF)trained radial basis function neural networks(RBFNN)for the surface vessels.The autopilot system constitutes the roll reduction controller and the yaw motion controller implemented in parallel.After analyzing the advantages of the DEKF-trained RBFNN control method theoretically,the ship’s nonlinear model with environmental disturbances was employed to verify the performance of the proposed stabilization system.Different sailing scenarios were conducted to investigate the motion responses of the ship in waves.The results demonstrate that the DEKF RBFNN based control system is efficient and practical in reducing roll motions and following the path for the ship sailing in waves only through rudder actions. 展开更多
关键词 Rudder roll damping AUTOPILOT radial basis function neural networks Dual extended Kalman filter training Intelligent control Path following Advancing in waves
在线阅读 下载PDF
柔性空间机器人预定义时间自适应滑模控制
7
作者 刘宜成 杨迦凌 +1 位作者 唐瑞 程靖 《浙江大学学报(工学版)》 北大核心 2025年第2期351-361,共11页
针对具有典型非线性特性的多段线驱动柔性空间机器人的轨迹跟踪控制问题,提出基于预定义时间的自适应滑模控制方法.基于常曲率方法和拉格朗日法,建立多段线驱动柔性空间机器人的动力学模型.设计基于预定义时间理论的滑模控制器,利用径... 针对具有典型非线性特性的多段线驱动柔性空间机器人的轨迹跟踪控制问题,提出基于预定义时间的自适应滑模控制方法.基于常曲率方法和拉格朗日法,建立多段线驱动柔性空间机器人的动力学模型.设计基于预定义时间理论的滑模控制器,利用径向基函数(RBF)神经网络补偿多段线驱动柔性空间机器人系统的建模误差和外界干扰.利用Lyapunov理论,证明轨迹跟踪误差可以在预定义时间内收敛.通过数值仿真验证了模型和控制器的有效性,与固定时间控制器和无补偿的控制器相比,所提出的控制器使系统轨迹误差具有更快的收敛速度. 展开更多
关键词 柔性空间机器人 预定义时间稳定性 径向基函数神经网络 轨迹跟踪 滑模控制
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化
8
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
孤岛模式下基于VSG的光储发电系统多机并联运行策略
9
作者 张萍 李扬 《全球能源互联网》 北大核心 2025年第1期98-109,共12页
随着光伏发电装机容量的大幅增加,电力系统呈现“低惯性、低阻尼”特性,虚拟同步发电机(virtual synchronous generators,VSG)技术可以提高系统稳定性和供电可靠性。针对孤岛模式下光储-VSG并联系统由于线路阻抗差异和负载投切等原因导... 随着光伏发电装机容量的大幅增加,电力系统呈现“低惯性、低阻尼”特性,虚拟同步发电机(virtual synchronous generators,VSG)技术可以提高系统稳定性和供电可靠性。针对孤岛模式下光储-VSG并联系统由于线路阻抗差异和负载投切等原因导致的系统环流及功率分配不均问题,提出一种协同自适应控制策略。首先,通过系统无功功率偏差动态调整虚拟阻抗值,实现无功功率的精确分配,从而抑制系统稳态环流。其次,为提升系统动态特性和抑制负载投切过程中系统的振荡,建立双输入三输出径向基函数(radial basis function,RBF)神经网络对系统关键参数进行优化。最后,建立3台光储-VSG并联模型,设定不同容量比进行仿真分析,验证了所提控制策略能更好地抑制系统环流,保证系统稳定运行。 展开更多
关键词 光储发电系统 虚拟同步发电机 动态虚拟阻抗 RBF神经网络 环流抑制
在线阅读 下载PDF
基于神经网络的无线电能传输自抗扰控制
10
作者 宋贝多 程志江 +1 位作者 刘尊祝 杨涵棣 《现代电子技术》 北大核心 2025年第6期85-90,共6页
为了实现电压型无线电能传输系统(WPT)的精确和稳定输出,解决自抗扰控制器(ADRC)参数整定复杂的问题,提出一种基于径向基(RBF)神经网络优化的ADRC控制的WPT系统。首先,建立双边LCC型WPT系统模型,并采用Hammerstein模型简化系统分析和控... 为了实现电压型无线电能传输系统(WPT)的精确和稳定输出,解决自抗扰控制器(ADRC)参数整定复杂的问题,提出一种基于径向基(RBF)神经网络优化的ADRC控制的WPT系统。首先,建立双边LCC型WPT系统模型,并采用Hammerstein模型简化系统分析和控制器设计;其次,利用RBF神经网络的在线学习能力动态优化ADRC控制器中的可调参数,以实现对系统输出电压的精确控制;最后,搭建基于RBF-ADRC的无线电能传输装置,比较RBF-ADRC和ADRC控制器的控制效果。实验结果表明,与传统ADRC控制器相比,RBF-ADRC控制器不仅解决了参数调整困难的问题,还显著提升了系统的响应速度和控制性能,验证了RBF-ADRC控制器的有效性,实现了无超调的稳定输出,并且过渡时间更短。 展开更多
关键词 无线电能传输系统 自抗扰控制 RBF神经网络 双边LCC型拓扑结构 恒压输出 径向基函数
在线阅读 下载PDF
泵设备成组筏架振动传递路径分析及优化设计
11
作者 贾泽坤 孙孟 +2 位作者 张冠军 李舒成 向阳 《哈尔滨工程大学学报》 北大核心 2025年第1期87-94,共8页
针对泵设备模块化成组筏架系统隔振效果不佳问题,本文通过建立泵设备模块化成组浮筏隔振系统有限元模型,计算成组设备浮筏系统的振动响应,基于结构声强法分析成组筏架筋板的振动能量传递及贡献度,确定了主要传递路径,并选取主要路径上... 针对泵设备模块化成组筏架系统隔振效果不佳问题,本文通过建立泵设备模块化成组浮筏隔振系统有限元模型,计算成组设备浮筏系统的振动响应,基于结构声强法分析成组筏架筋板的振动能量传递及贡献度,确定了主要传递路径,并选取主要路径上的结构参数,基于径向基函数神经网络建立代理模型,并利用粒子群算法进行优化设计。分析了泵组产生的振动激励的主要传递路径,并选取上、下面板、中间筋板及基座厚度为设计变量进行优化,优化后筏架隔振器下支撑点的振动加速度级合成值相比于优化前降低了14 dB。结果表明:计算结果在算法优化的误差范围内,满足优化设计要求。 展开更多
关键词 成组筏架 浮筏系统 有限元 传递路径分析 结构声强 贡献度分析 径向基函数神经网络 粒子群算法
在线阅读 下载PDF
径向基神经网络的运载火箭动力弹道耦合优化研究
12
作者 郝文智 张志国 +1 位作者 朱浩 何巍 《宇航总体技术》 2025年第1期20-25,共6页
对于具备节流能力的液体运载火箭弹道优化问题,不同于传统动力弹道解耦设计方法,为开展考虑节流后比冲变化影响的实时弹道节流优化设计,构建耦合发动机流量特性的动力弹道一体化精细模型,实现运载能力的精准评估。为解决精细化模型优化... 对于具备节流能力的液体运载火箭弹道优化问题,不同于传统动力弹道解耦设计方法,为开展考虑节流后比冲变化影响的实时弹道节流优化设计,构建耦合发动机流量特性的动力弹道一体化精细模型,实现运载能力的精准评估。为解决精细化模型优化时间效率问题,将径向基神经网络近似模型应用到实时动力弹道耦合仿真中,单轮优化时间降低81.4%,且精度误差小于1%。此外,基于径向基神经网络模型的近似优化算法在显著缩短寻优时间的同时,还具备通用移植性,在实时在线优化等工程领域应用前景广阔。 展开更多
关键词 液体运载火箭 动力弹道耦合设计 近似优化 径向基函数 神经网络
在线阅读 下载PDF
海流扰动下ROV自适应神经网络控制
13
作者 李相衡 闫昭琨 +1 位作者 楼建坤 王鸿东 《水下无人系统学报》 2025年第1期37-45,共9页
针对水下遥控机器人(ROV)在模型参数不确定和海流扰动下的运动控制问题,基于有限时间命令滤波和径向基函数(RBF)神经网络设计出一种自适应反步控制系统。首先,基于马尔科夫过程构建随机海流模型,并构建海流扰动下的ROV数学模型;其次,针... 针对水下遥控机器人(ROV)在模型参数不确定和海流扰动下的运动控制问题,基于有限时间命令滤波和径向基函数(RBF)神经网络设计出一种自适应反步控制系统。首先,基于马尔科夫过程构建随机海流模型,并构建海流扰动下的ROV数学模型;其次,针对期望速度引入命令滤波技术,以减少传统反步法迭代导数带来的计算量;然后,利用RBF神经网络对ROV模型的不确定项和外部未知扰动进行估计,并设计自适应神经网络控制器;最后,利用李雅普诺夫稳定性理论证明了闭环控制系统的稳定性。仿真结果表明,文中设计的控制器可以实现ROV航行的精确控制,并能够有效抑制模型的不确定项和海流扰动对ROV运动的影响。 展开更多
关键词 水下遥控机器人 海流扰动 命令滤波 径向基函数神经网络
在线阅读 下载PDF
基于RBFNN的两时间尺度供应链H_(∞)最优控制
14
作者 杨洪凯 李庆奎 《北京信息科技大学学报(自然科学版)》 2025年第1期69-79,共11页
为应对当今供应链库存管理面临的牛鞭效应、两时间尺度特性和不确定性干扰等挑战,开发了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的两时间尺度供应链H_(∞)最优控制器。利用奇异摄动理论将原两时间尺... 为应对当今供应链库存管理面临的牛鞭效应、两时间尺度特性和不确定性干扰等挑战,开发了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的两时间尺度供应链H_(∞)最优控制器。利用奇异摄动理论将原两时间尺度供应链模型分解为2个具有不同时间尺度的独立子系统;创新性地使用RBFNN在线近似补偿子系统的不确定项,进而采用H_(∞)控制来抑制RBFNN近似误差带来的不确定性。在理论层面上分析证明了所提方法的稳定性。通过一个电视机生产流程仿真案例,验证了所提方法相比2种其他两时间尺度问题解决方法,具有更高的跟踪控制精度和应用可行性。 展开更多
关键词 供应链 奇异摄动 径向基函数神经网络 两时间尺度系统
在线阅读 下载PDF
考虑未知时变流速的AUV改进动态面自适应跟踪控制
15
作者 李亚龙 王俊雄 《装备环境工程》 2025年第1期144-151,共8页
目的提高水下机器人在未知时变海流速度、不确定性建模和环境干扰3种未知因素影响下的跟踪控制性能。方法基于改进动态面自适应控制方法,首先为补偿三种未知因素的影响,设计海流速度自适应更新律和径向基神经网络,对其进行实时估计,同... 目的提高水下机器人在未知时变海流速度、不确定性建模和环境干扰3种未知因素影响下的跟踪控制性能。方法基于改进动态面自适应控制方法,首先为补偿三种未知因素的影响,设计海流速度自适应更新律和径向基神经网络,对其进行实时估计,同时将传统的固定滤波器改进为一种时变滤波器,以改善控制输入抖振问题。然后构建Lyapunov函数证明稳定性。最后进行仿真实验,并与传统动态面控制法和反步滑模控制法作对比。结果本文设计的海流速度自适应更新律和径向基神经网络能够精确估计3种未知因素的影响,展现了强大的鲁棒性。此外,相比于2种对比方法,本文方法在控制精度、解决抖振能力方面展现了优越的控制性能。结论基于改进动态面自适应控制方法,在考虑不确定性建模和环境干扰的基础上,解决了现实情况中存在的未知时变海流速度干扰问题,同时提高了水下机器人在复杂环境中的控制性能。 展开更多
关键词 水下机器人 动态面控制 未知时变海流速度 自适应控制 轨迹跟踪 径向基神经网络
在线阅读 下载PDF
基于机器学习方法的“以电折水”系数研究
16
作者 冯佳伟 姜宁 +2 位作者 刘岩 董万里 杨莹 《黑龙江水利科技》 2025年第3期139-144,共6页
目前“以电折水”作为农业地下水开采量的间接计量方法,估算地区农灌机井“以电折水”系数对于地区地下水开采量准确计量至关重要。当前多数研究采用在灌溉机井出水口安装计量设施,直接测量机井单位时间内的抽水量与耗电量来计算“以电... 目前“以电折水”作为农业地下水开采量的间接计量方法,估算地区农灌机井“以电折水”系数对于地区地下水开采量准确计量至关重要。当前多数研究采用在灌溉机井出水口安装计量设施,直接测量机井单位时间内的抽水量与耗电量来计算“以电折水”系数的具体数值。相比之下,利用数学模型并结合相关影响因素对“以电折水”系数进行预测的研究较为稀缺。文章针对“以电折水”系数进行预测及分析研究,采用平均相对误差(MRE)、均方根误差(RMSE)以及决定系数(R^(2))对不同模型的预测准确性展开对比。研究表明,采用平均值法预测的“以电折水”系数误差平均为30.33%,表明该方法下的预测结果与实际数据之间的拟合度较低,精度欠佳;而使用径向基函数神经网络模型时,预测误差则降低至11.23%;支持向量机回归模型展现了良好的预测性能,其预测误差仅为9.29%,显示出最佳的数据拟合度与最高的预测精度。 展开更多
关键词 “以电折水”系数 径向基函数神经网络模型 支持向量机回归模型 农业地下水开采计量
在线阅读 下载PDF
基于神经网络的船测稀疏海域地形反演改进算法
17
作者 欧阳明达 翟振和 +3 位作者 牛向华 管斌 张鹏飞 付永健 《中国惯性技术学报》 北大核心 2025年第1期64-69,共6页
针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,... 针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,所建立神经网络模型用于长波重力异常格网构建,达到提高地形反演精度的目的。为验证改进算法有效性,设计7种不同组合模式,将南中国海某海域作为研究对象,对比形成最优方案,结果表明,在船测稀疏海域,改进方案相比重力地质法反演精度提高40%以上。 展开更多
关键词 重力地质法 径向基函数神经网络算法 重力异常 海底地形
在线阅读 下载PDF
四川盆地耕地表层土壤容重缺失数据填补方法
18
作者 李艾雯 李文丹 +6 位作者 宋靓颖 冉敏 陈丹 成金礼 齐浩然 郭聪慧 李启权 《土壤学报》 北大核心 2025年第1期40-53,共14页
构建土壤容重高精度预测方法是准确补全区域土壤属性数据库的需要。本研究基于全国第二次土壤普查时获得的四川盆地(含四川省和重庆市)2883个典型耕地样点数据,运用相关分析、方差分析和回归分析等方法揭示表层土壤容重的统计特征及其... 构建土壤容重高精度预测方法是准确补全区域土壤属性数据库的需要。本研究基于全国第二次土壤普查时获得的四川盆地(含四川省和重庆市)2883个典型耕地样点数据,运用相关分析、方差分析和回归分析等方法揭示表层土壤容重的统计特征及其主控因素,采用传统土壤传递函数(PTFs)、多元线性回归(MLR)模型、径向基函数神经网络(RBFNN)模型和随机森林(RF)模型通过不分区、分流域以及分土类3种建模方式建立土壤容重预测模型,以期实现对该区域土壤容重缺失值的填补。结果表明:研究区耕地表层土壤容重处于0.60~1.71 g·cm^(-3)之间,均值为1.29 g·cm^(-3)。土壤有机质、土壤亚类和夏季降雨量是土壤容重最重要的影响因素。分流域构建的RBFNN预测模型能较好地捕捉土壤容重与各影响因素的非线性关系以及这种关系的空间非平稳性,432个独立验证样点预测结果的决定系数(R^(2))和均方根误差(RMSE)分别为0.519和0.095 g·cm^(-3),明显优于其他方法,其不仅有助于提高四川盆地耕地表层土壤容重缺失值的填补精度,也为其他区域土壤性质缺失值的填补提供了方法参考。 展开更多
关键词 土壤容重 传递函数 四川盆地 多元线性回归模型 径向基函数神经网络模型 随机森林模型
在线阅读 下载PDF
基于DBO-RBF的建筑工程成本估算模型
19
作者 杨文才 《无线互联科技》 2025年第6期96-99,共4页
为了实现建筑工程成本的精准估算,文章提出一种基于蜣螂优化(Dung Beetle Optimization,DBO)算法优化径向基函数(Radial Basis Function,RBF)神经网络的建筑工程成本估算方法。该研究利用DBO算法寻优搜索确定RBF神经网络的最优网络参数... 为了实现建筑工程成本的精准估算,文章提出一种基于蜣螂优化(Dung Beetle Optimization,DBO)算法优化径向基函数(Radial Basis Function,RBF)神经网络的建筑工程成本估算方法。该研究利用DBO算法寻优搜索确定RBF神经网络的最优网络参数。在此基础上构建DBO-RBF模型,文章利用DBO-RBF模型对实际工程的建筑成本进行估算,将估算结果与其他方法对比。结果表明,DBO-RBF模型输出结果的均方根误差和平均相对误差分别为121.48万元和3.24%,在模型稳定性和估算精度方面优于其他对比方法,验证了所提方法的有效性。 展开更多
关键词 建筑工程 成本 估算 径向基函数神经网络 蜣螂优化算法
在线阅读 下载PDF
基于自适应与神经网络滑模的航空器主动控制
20
作者 贾格非 陈荣杰 +1 位作者 钟福明 刘锡烨 《航空计算技术》 2025年第2期77-82,共6页
聚焦于应用压电驱动器实现对夹紧矩形膜结构的大幅非线性振动的主动控制。基于膜结构非线性动力学模型,采用自适应控制策略和引入滑模控制器与径向基函数神经网络的结合,通过Matlab数值仿真验证了控制方法的有效性。研究结果表明,自适... 聚焦于应用压电驱动器实现对夹紧矩形膜结构的大幅非线性振动的主动控制。基于膜结构非线性动力学模型,采用自适应控制策略和引入滑模控制器与径向基函数神经网络的结合,通过Matlab数值仿真验证了控制方法的有效性。研究结果表明,自适应控制和变结构神经网络控制成功抑制了膜结构振动,在面对不同激励条件下均能快速趋近参考模型的动态响应。并引入卡尔曼观测器有效抑制了测量噪声,降低了控制成本。为航空航天领域中薄膜结构振动控制提供了可靠的解决途径。 展开更多
关键词 大振幅振动 滑模控制 自适应控制 径向基函数神经网络 卡尔曼观测器
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部