Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV...Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.展开更多
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ...Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.展开更多
This study aims to reflect the information coverage grey number and the interaction between attributes in grey relational decision making. Therefore, a multi-attribute decision method based on the grey information cov...This study aims to reflect the information coverage grey number and the interaction between attributes in grey relational decision making. Therefore, a multi-attribute decision method based on the grey information coverage interaction relational degree(GIRD) is proposed. Firstly, this paper defines the information coverage grey number, and establishes the GIRD model by using the Choquet fuzzy integral and grey relational principle. It proves that the proposed model not only is the general and unified form of the point relational degree, interval relational degree, mixed relational degree and grey fuzzy integral relational degree, but also can effectively deal with the interaction between attributes. Further,a decision making example of evaluating the industrial operation quality for 14 cities in Hunan province of China is provided to highlight the implementation, availability, and feasibility of the proposed decision model.展开更多
To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line ...To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.展开更多
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the...A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.展开更多
This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment ...This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.展开更多
The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based regio...The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based region coverage control law and the adaptive tracking control law.The APF-based region coverage control law ensures the coverage task is achieved until every single stratospheric airship ends up performing station keeping where near the respective global minimum point,in which an innovative solution to the local minimum problem is put forward.The adaptive tracking control law is designed to realize motion control using tracking the desired velocity and angular velocity given by coverage control law,with the consideration of several practical control problems as unknown individual differences and external disturbances.To save resources,the combined self-/event-triggered mechanism designed therein significantly reduces the times of state information transmission and control law calculation.The effectiveness of the proposed control framework is verified through simulations.展开更多
The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on cov...The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on coverage optimization methods are proposed to improve the control performance of the system and make the state norm of the system converge to zero faster. The coverage optimization problems are constructed based on the measurement of each agent. By solving the coverage optimization problems, the local optimal moving direction of each agent can be obtained. Then the gradient-based agent motion control laws are established. With the indicator function and the surface delta function, this method is generalized to n-dimensional space, and suitable for any sensing region with piecewise smooth boundaries. The stability and control performance of the system are analyzed. Numerical simulations show the effectiveness of the proposed methods.展开更多
Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morpho...Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morphology simulation with an enhanced agglomerate model to establish a mathematical framework elucidating pore evolution,Pt utilization,and oxygen transport in catalyst layers.Results demonstrate dominant local mass transport resistance governed by three factors:(1)active site density dictating oxygen flux;(2)ionomer film thickness defining shortest transport path;(3)ionomer-to-Pt surface area ratio modulating practical pathway length.At low ionomer-to-carbon(I/C)ratios,limited active sites elevate resistance(Factor 1 dominant).Higher I/C ratios improve the ionomer coverage but eventually thicken ionomer films,degrading transport(Factors 2–3 dominant).The results indicate that larger carbon particles result in a net increase in local transport resistance by reducing external surface area and increasing ionomer thickness.As the proportion of Pt situated in nanopores or the Pt mass fraction increases,elevated Pt density inside the nanopores exacerbates pore blockage.This leads to the increased transport resistance by reducing active sites,and increasing ionomer thickness and surface area.Lower Pt loading linearly intensifies oxygen flux resistance.The model underscores the necessity to optimize support morphology,Pt distribution,and ionomer content to prevent pore blockage while balancing catalytic activity and transport efficiency.These insights provide a systematic approach for designing high-performance mesoporous carbon catalysts.展开更多
Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges...Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
2018年6月25日,美国农业部(USDA)向拥有涉及农业风险保障(Agriculture risk coverage,ARC)和价格损失保险(Price loss coverage,PLC)项目的一般基本农田的农业生产者发送了历年种植面积和产量报告,计划对这些基本农田增添籽棉保险内容,...2018年6月25日,美国农业部(USDA)向拥有涉及农业风险保障(Agriculture risk coverage,ARC)和价格损失保险(Price loss coverage,PLC)项目的一般基本农田的农业生产者发送了历年种植面积和产量报告,计划对这些基本农田增添籽棉保险内容,这些信息有助于生产者就合理分配耕地面积做出最佳选择和决定。美国农业部农业服务局(FSA)负责人Richard Fordyce发言说“我们发送这些信息,以确保农民和农场主基于数据对美国农业部的农作物保险计划做出关键决策。生产者花几分钟时间将他们收到的信息与农场历史记录进行比较,这很重要。如果有问题,可联系美国农业部在当地的办公机构。展开更多
Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A...Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further.展开更多
An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module ...An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module act as mobile nodes,with various on-board sensors,Tp-link wireless local area network cards,and Tp-link wireless routers.The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network.The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots.This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments.In post-disaster areas,the network is usually absent or variable and the site scene is cluttered with obstacles.To adapt to such harsh situations,the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage.The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN.Therefore,the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment.Simulations and experiments validate the improved performances of the exploration area coverage,object marked,and loop closure,which are adapted to search and rescue post-disaster cluttered environments.展开更多
This article deals with the case of the failure-censored constant-stress partially accelerated life test (CSPALT) for highly reliable materials or products assuming the Pareto distribution of the second kind. The ma...This article deals with the case of the failure-censored constant-stress partially accelerated life test (CSPALT) for highly reliable materials or products assuming the Pareto distribution of the second kind. The maximum likelihood (ML) method is used to estimate the parameters of the CSPALT model. The performance of ML estimators is investigated via their mean square error. Also, the average confidence interval length (IL) and the associated co- verage probability (CP) are obtained. Moreover, optimum CSPALT plans that determine the optimal proportion of the test units al- located to each stress are developed. Such optimum test plans minimize the generalized asymptotic variance (GAV) of the ML estimators of the model parameters. For illustration, Monte Carlo simulation studies are given and a real life example is provided.展开更多
Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
基金National Natural Science Foundation of China(Grant No.52472417)to provide fund for conducting experiments.
文摘Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
基金supported by the National Natural Science Foundation of China (61903036, 61822304)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)。
文摘Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.
基金supported by the National Natural Science Foundation of China(71871174,71571065,71671135)the National Social Science Fund of China(13FGL005)。
文摘This study aims to reflect the information coverage grey number and the interaction between attributes in grey relational decision making. Therefore, a multi-attribute decision method based on the grey information coverage interaction relational degree(GIRD) is proposed. Firstly, this paper defines the information coverage grey number, and establishes the GIRD model by using the Choquet fuzzy integral and grey relational principle. It proves that the proposed model not only is the general and unified form of the point relational degree, interval relational degree, mixed relational degree and grey fuzzy integral relational degree, but also can effectively deal with the interaction between attributes. Further,a decision making example of evaluating the industrial operation quality for 14 cities in Hunan province of China is provided to highlight the implementation, availability, and feasibility of the proposed decision model.
基金supported by the National Natural Science Foundation of China (61971470)。
文摘To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.
基金Project(2008BA00400)supported by the Foundation of Department of Science and Technology of Jiangxi Province,China
文摘A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.
基金supported by the National Natural Science Foundation of China(61971470).
文摘This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.
基金supported by the Postdoctoral Science Foundation of China(Grant No.2020TQ0028)the National Natural Science Foundation of China(No.62173016)Beijing Natural Science Foundation,PRChina(No.4202038)。
文摘The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based region coverage control law and the adaptive tracking control law.The APF-based region coverage control law ensures the coverage task is achieved until every single stratospheric airship ends up performing station keeping where near the respective global minimum point,in which an innovative solution to the local minimum problem is put forward.The adaptive tracking control law is designed to realize motion control using tracking the desired velocity and angular velocity given by coverage control law,with the consideration of several practical control problems as unknown individual differences and external disturbances.To save resources,the combined self-/event-triggered mechanism designed therein significantly reduces the times of state information transmission and control law calculation.The effectiveness of the proposed control framework is verified through simulations.
基金supported by the National Natural Science Foundation of China(61807016 61174021)+3 种基金the Fundamental Research Funds for the Central Universities(JUSRP115A28 JUSRP51733B)the 111 Projeet(B12018)the Postgraduate Innovation Project of Jiangsu Province(KYLX151170)
文摘The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on coverage optimization methods are proposed to improve the control performance of the system and make the state norm of the system converge to zero faster. The coverage optimization problems are constructed based on the measurement of each agent. By solving the coverage optimization problems, the local optimal moving direction of each agent can be obtained. Then the gradient-based agent motion control laws are established. With the indicator function and the surface delta function, this method is generalized to n-dimensional space, and suitable for any sensing region with piecewise smooth boundaries. The stability and control performance of the system are analyzed. Numerical simulations show the effectiveness of the proposed methods.
基金supported by the Program of Ministry of Science and Technology of China(No.2023YFB2504200)support of Shanghai Rising-Star Program(Grant No.24QB2703200)the Major Science and Technology Projects of Yunnan Province(No.202302AH360001).
文摘Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morphology simulation with an enhanced agglomerate model to establish a mathematical framework elucidating pore evolution,Pt utilization,and oxygen transport in catalyst layers.Results demonstrate dominant local mass transport resistance governed by three factors:(1)active site density dictating oxygen flux;(2)ionomer film thickness defining shortest transport path;(3)ionomer-to-Pt surface area ratio modulating practical pathway length.At low ionomer-to-carbon(I/C)ratios,limited active sites elevate resistance(Factor 1 dominant).Higher I/C ratios improve the ionomer coverage but eventually thicken ionomer films,degrading transport(Factors 2–3 dominant).The results indicate that larger carbon particles result in a net increase in local transport resistance by reducing external surface area and increasing ionomer thickness.As the proportion of Pt situated in nanopores or the Pt mass fraction increases,elevated Pt density inside the nanopores exacerbates pore blockage.This leads to the increased transport resistance by reducing active sites,and increasing ionomer thickness and surface area.Lower Pt loading linearly intensifies oxygen flux resistance.The model underscores the necessity to optimize support morphology,Pt distribution,and ionomer content to prevent pore blockage while balancing catalytic activity and transport efficiency.These insights provide a systematic approach for designing high-performance mesoporous carbon catalysts.
文摘Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
文摘Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further.
基金Projects(61573213,61473174,61473179)supported by the National Natural Science Foundation of ChinaProjects(ZR2015PF009,ZR2014FM007)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(2014GGX103038)supported by the Shandong Province Science and Technology Development Program,ChinaProject(2014ZZCX04302)supported by the Special Technological Program of Transformation of Initiatively Innovative Achievements in Shandong Province,China
文摘An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module act as mobile nodes,with various on-board sensors,Tp-link wireless local area network cards,and Tp-link wireless routers.The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network.The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots.This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments.In post-disaster areas,the network is usually absent or variable and the site scene is cluttered with obstacles.To adapt to such harsh situations,the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage.The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN.Therefore,the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment.Simulations and experiments validate the improved performances of the exploration area coverage,object marked,and loop closure,which are adapted to search and rescue post-disaster cluttered environments.
基金supported by the King Saud University,Deanship of Scientific Research and College of Science Research Center
文摘This article deals with the case of the failure-censored constant-stress partially accelerated life test (CSPALT) for highly reliable materials or products assuming the Pareto distribution of the second kind. The maximum likelihood (ML) method is used to estimate the parameters of the CSPALT model. The performance of ML estimators is investigated via their mean square error. Also, the average confidence interval length (IL) and the associated co- verage probability (CP) are obtained. Moreover, optimum CSPALT plans that determine the optimal proportion of the test units al- located to each stress are developed. Such optimum test plans minimize the generalized asymptotic variance (GAV) of the ML estimators of the model parameters. For illustration, Monte Carlo simulation studies are given and a real life example is provided.
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.