期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT 被引量:1
1
作者 朱建阳 蒋林 赵慧 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2075-2082,共8页
The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the ... The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind. 展开更多
关键词 fluctuating wind vertical axis wind turbine(VAWT) self-starting performance weak coupling method fluctuation amplitude and frequency
在线阅读 下载PDF
Investigation of flight stability for fixed canard dual-spin projectile via CFD/RBD coupled method
2
作者 Gang Wang Tengyue Zhang +2 位作者 Tianyu Lin Haizhen Lin Ke Xi 《Defence Technology(防务技术)》 2025年第11期1-18,共18页
In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin proj... In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin projectile.The platform's reliability is validated by reproducing the characteristic resonance instability of such projectiles.By coupling the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations and the seven-degree-of-freedom RBD equations,the virtual flight simulations of fixed canard dual-spin projectiles at various curvature trajectories are achieved,and the dynamic mechanism of the trajectory following process is analyzed.The instability mechanism of the dynamic instability during trajectory following process of the fixed canard dual-spin projectile is elucidated by simulating the rolling/coning coupled forced motion,and subsequently validated through virtual flight simulations.The findings suggest that an appropriate yaw moment can drive the projectile axis to precession in the tangential direction of the trajectory,thereby enhancing the trajectory following stability.However,the damping of the projectile attains its minimum value when the forward body equilibrium rotational speed(-128 rad/s)is equal to the negative of the fast mode frequency of the projectile.Insufficient damping leads to the fixed canard dual-spin projectile exiting the dynamic stability domain during the trajectory following,resulting in weakly damped instability.Keeping the forward body not rotating or increasing the spin rates to-192 rad/s can enhance the projectile's damping,thereby improving its dynamic stability. 展开更多
关键词 Fixed canard dual-spin projectile CFD/RBD coupled method Virtualflight simulation Following stability Dynamic stability
在线阅读 下载PDF
Prediction of vibrations from underground trains on Beijing metro line 15 被引量:8
3
作者 丁德云 刘维宁 +2 位作者 GUPTA S LOMBAERT G DEGRANDE G 《Journal of Central South University》 SCIE EI CAS 2010年第5期1109-1118,共10页
The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the... The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the vibrations.Using the state-of-the-art three-dimensional coupled periodic finite element-boundary element(FE-BE) method,the dynamic track-tunnel-soil interaction model for metro line 15 was used to predict vibrations in the free field at a train speed of 80 km/h.Three types of tracks(direct fixation fasteners,floating slab track and floating ladder track) on the Beijing metro network were considered in the model. For each track,the acceleration response in the free field was obtained.The numerical results show that the influence of vibrations from underground trains on sensitive equipment depends on the track types.At frequencies above 10 Hz,the floating slab track with a natural frequency of 7 Hz can be effective to attenuate the vibrations. 展开更多
关键词 vibration prediction underground trains coupled periodic FE-BE method track types
在线阅读 下载PDF
Wind-induced responses of super-large cooling towers 被引量:3
4
作者 柯世堂 葛耀君 +2 位作者 赵林 陈少林 Y.Tamura 《Journal of Central South University》 SCIE EI CAS 2013年第11期3216-3228,共13页
Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formula... Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers. 展开更多
关键词 super-large cooling towers wind-induced responses wind vibration coefficients aero-elastic model consistent coupled method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部