期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system 被引量:1
1
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system Electromechanical coupling dynamics Uncertainty quantification Generalized probability density evolution
在线阅读 下载PDF
Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads 被引量:29
2
作者 XIAO Peng LI Di-yuan +3 位作者 ZHAO Guo-yan ZHU Quan-qi LIU Huan-xin ZHANG Chun-shun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2945-2958,共14页
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ... The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions. 展开更多
关键词 split Hopkinson pressure bar(SHPB)system digital image correlation(DIC) coupled static and dynamic loads FLAW crack propagation
在线阅读 下载PDF
Impacts of flexible obstructive working environment on dynamic performances of inspection robot for power transmission line 被引量:7
3
作者 肖晓晖 吴功平 +1 位作者 杜娥 李三平 《Journal of Central South University of Technology》 2008年第6期869-876,共8页
The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's... The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's dynamic performance. First, considering the structure of the obstacles and symmetrical mechanism of the robot prototype, four basic subactions were abstracted to fulfill full-path kinematic tasks. Then, a multi-rigid-body dynamic model of the robot was built with Lagrange equation, whil^e a multi-flexible-body dynamic model of a span of lin~ was obtained by combining finite element method (FEM), modal synthesis method and Lagrange equation. The two subsystem models were coupled under rolling along no-obstacle segment and overcoming obstacle poses, and these simulations of three subactions along different spans of line were performed in ADMAS. The simulation results, including the coupling vibration parameters and driving moment of joint motors, show the dynamic performances of the robot along ftexibile obstructive working path: in flexible obstructive working environment, the robot can fulfill the preset motion goals; it responses slower in more flexible path; the fluctuation of robot as well as driving moment of the corresponding joint in startup and brake region is greater than that in rigid environment; the fluctuation amplitude increases with increasing working environment flexibility. 展开更多
关键词 inspection robot transmission line OBSTRUCTION rigid-flexible coupling dynamics finite element method simulation
在线阅读 下载PDF
Numerical simulation of dynamic fracture properties of rocks under different static stress conditions 被引量:7
4
作者 LIANG Zheng-zhao QIAN Xi-kun +1 位作者 ZHANG Ya-fang LIAO Zhi-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期624-644,共21页
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio... When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case. 展开更多
关键词 rock mechanics coupled static and dynamic loading numerical simulation rate-dependent damage constitutive model
在线阅读 下载PDF
Numerical simulation of wheel wear evolution for heavy haul railway 被引量:13
5
作者 王璞 高亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期196-207,共12页
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati... The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance. 展开更多
关键词 heavy haul railway wheel wear evolution wheel-rail rolling contact vehicle-track coupling dynamics profile updating
在线阅读 下载PDF
Dynamic performance of heavy-haul combined train applying emergency braking on straight line 被引量:6
6
作者 刘鹏飞 王开云 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1898-1908,共11页
A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interaction... A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes. 展开更多
关键词 heavy-haul train longitudinal impulse vehicle–track coupled dynamics emergency braking
在线阅读 下载PDF
Modified super twisting controller for servicing to uncontrolled spacecraft
7
作者 Binglong Chen Yunhai Geng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期334-345,共12页
A relative position and attitude coupled sliding mode controller is proposed by combining the standard super twisting (ST) control and basic linear algorithm for autonomous rendezvous and docking. It is schemed for ... A relative position and attitude coupled sliding mode controller is proposed by combining the standard super twisting (ST) control and basic linear algorithm for autonomous rendezvous and docking. It is schemed for on-orbit servicing to a tumbling non- cooperative target spacecraft subjected to external disturbances. A coupled dynamic model is established including both kinemati- cal and dynamic coupled effect of relative rotation on relative translation, which illustrates the relative movement between the docking port located in target spacecraft and another in service spacecraft. The modified super twisting (MST) control algorithm containing linear compensation items is schemed to manipulate the relative position and attitude synchronously. The correction provides more robustness and convergence velocity for dealing with linearly growing perturbations than the ST control algorithm. Moreover, the stability characteristic of closed-loop system is ana- lyzed by Lyapunov method. Numerical simulations are adopted to verify the analysis with the comparison between MST and ST control algorithms. Simulation results demonstrate that the pro- posed MST controller is characterized by high precision, strong robustness and fast convergence velocity to attenuate the linearly increasing perturbations. 展开更多
关键词 autonomous rendezvous and docking coupled dynamic model modified super twisting Lyapunov method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部