The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power p...Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.展开更多
强耦合条件下,复杂系统的有限元分析受到自由度的影响计算成本高昂。虽然模态叠加技术能减少耦合系统的自由度,但基于忽略不同子系统间高阶模态和低阶模态耦合作用的假设,若使用非耦合模态可能导致收敛性差。基于无阻尼声振耦合方程,本...强耦合条件下,复杂系统的有限元分析受到自由度的影响计算成本高昂。虽然模态叠加技术能减少耦合系统的自由度,但基于忽略不同子系统间高阶模态和低阶模态耦合作用的假设,若使用非耦合模态可能导致收敛性差。基于无阻尼声振耦合方程,本文采用分片传递函数法(Patch transfer function method,PTFM)将耦合面处理成一系列独立的分片,每个分片上所属单元节点值的平均值定义为分片传递函数,通过使用连续性关系计算耦合系统的分片传递函数。将耦合矩阵的求逆简化为源点到响应点的传递函数,可以快速计算耦合系统响应值。分别利用直接耦合法(Direct coupling method,DCM)和分片传递函数法计算板和空气声腔耦合模型,验证分片传递函数法的有效性,并讨论了分片传递函数的算法原理和计算误差。展开更多
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
基金financially supported by the National Natural Science Foundation of China(Nos.5177906251579055)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.HEUCFP201714)Shenzhen Special Fund for the future industries(No.JCYJ20160331163751413)
文摘Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.
文摘强耦合条件下,复杂系统的有限元分析受到自由度的影响计算成本高昂。虽然模态叠加技术能减少耦合系统的自由度,但基于忽略不同子系统间高阶模态和低阶模态耦合作用的假设,若使用非耦合模态可能导致收敛性差。基于无阻尼声振耦合方程,本文采用分片传递函数法(Patch transfer function method,PTFM)将耦合面处理成一系列独立的分片,每个分片上所属单元节点值的平均值定义为分片传递函数,通过使用连续性关系计算耦合系统的分片传递函数。将耦合矩阵的求逆简化为源点到响应点的传递函数,可以快速计算耦合系统响应值。分别利用直接耦合法(Direct coupling method,DCM)和分片传递函数法计算板和空气声腔耦合模型,验证分片传递函数法的有效性,并讨论了分片传递函数的算法原理和计算误差。