The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test...The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction.展开更多
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles ...To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sands...This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established.展开更多
Analysis of the electromagneto-mechanical coupling effect contributes greatly to the high accuracy estimation of the EM load of many EM devices, such as a tokamak structure during plasma disruption. This paper present...Analysis of the electromagneto-mechanical coupling effect contributes greatly to the high accuracy estimation of the EM load of many EM devices, such as a tokamak structure during plasma disruption. This paper presents a method for the numerical analysis of the electromagnetomechanical coupling effect on the basis of Maxwell's equations in the Lagrangian description and staggered load transfer scheme, which can treat the coupled behaviors of magnetic damping and magnetic stiffness effects at the same time. Codes were developed based on the ANSYS development platform and were applied to solve two typical numerical examples: the TEAM Problem 16 and dynamic behavior analysis of a shallow arch under electromagnetic force. The good consistency of numerical results and experimental data demonstrates the validity and accuracy of the proposed method and the related numerical codes.展开更多
Based on space-charge wave theory, the formulae of the beam-wave coupling coefficient and the beam-loaded conductance are given for the beam-wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of ...Based on space-charge wave theory, the formulae of the beam-wave coupling coefficient and the beam-loaded conductance are given for the beam-wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of the nonbeam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam-wave interaction. As an example, the stabilities of the beam-wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π, π, and π/2 modes, respectively. The results show that stable operation of the 2π, π, and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain.展开更多
The influence of human body on dynamic characteristics of footbridge was analyzed. A re- alistic footbridge was measured during a mass event. A simulation experiment system including a simple beam as object and a shak...The influence of human body on dynamic characteristics of footbridge was analyzed. A re- alistic footbridge was measured during a mass event. A simulation experiment system including a simple beam as object and a shaker as back ground excitation was built. The acceleration responses of beam were measured when person in static and active stated stood on the beam. The dynamic pa- rameters of the structure were identified by the time-domain approach and verified by theoretical and laboratory tests. The results showed that for the human-structure coupled system, nature frequency of the structure decreased and damping increased. Moreover, the increase of damping with passive person was bigger than that with active person.展开更多
基金supported by the National Natural Science Foundation of China(No.51804309)the Yue Qi Young Scholar Project(2019QN02)+5 种基金Distinguished Scholar Project(2017JCB02)from China University of Mining and Technology-Beijing,Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.SHJT-17-42.10)National Natural Science Foundation of China(No.U1910206)the fund of Beijing Outstanding Young Scientist Program(BJJWZYJH01201911413037)the State Key Laboratory of Coal Resources and Safe Mining(Nos.SKLCRSM16KFB07,SKLCRSM16DCB01 and SKLCRSM17DC11)Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)the key project of Key Laboratory of Coal Mine Safety and High Efficiency Mining Co-established by the Province and the Ministry(Anhui University of Science and Technology)(No.JYBSYS2018201).
文摘The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction.
基金the Chinese Scholarship Council (No. 201706370022) for the financial support to the joint Ph.D. programme at the University of Wollongong,Australia
文摘To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
基金supported by the National Natural Science Foundation of China(Nos.52274118 and 52274145)the Construction Project of Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone(No.2021sfQ18).
文摘This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established.
基金supported by National Magnetic Confinement Fusion Program of China(No.2013GB113005)the National Natural Science Foundation of China(Nos.51277139,11321062)the National 973 Program of China(No.2011CB610303)
文摘Analysis of the electromagneto-mechanical coupling effect contributes greatly to the high accuracy estimation of the EM load of many EM devices, such as a tokamak structure during plasma disruption. This paper presents a method for the numerical analysis of the electromagnetomechanical coupling effect on the basis of Maxwell's equations in the Lagrangian description and staggered load transfer scheme, which can treat the coupled behaviors of magnetic damping and magnetic stiffness effects at the same time. Codes were developed based on the ANSYS development platform and were applied to solve two typical numerical examples: the TEAM Problem 16 and dynamic behavior analysis of a shallow arch under electromagnetic force. The good consistency of numerical results and experimental data demonstrates the validity and accuracy of the proposed method and the related numerical codes.
基金supported by the National Natural Science Foundation of China (Grant No. 11205162)
文摘Based on space-charge wave theory, the formulae of the beam-wave coupling coefficient and the beam-loaded conductance are given for the beam-wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of the nonbeam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam-wave interaction. As an example, the stabilities of the beam-wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π, π, and π/2 modes, respectively. The results show that stable operation of the 2π, π, and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain.
基金Supported by the International S&T Cooperation Program of China(2010DFB74280)
文摘The influence of human body on dynamic characteristics of footbridge was analyzed. A re- alistic footbridge was measured during a mass event. A simulation experiment system including a simple beam as object and a shaker as back ground excitation was built. The acceleration responses of beam were measured when person in static and active stated stood on the beam. The dynamic pa- rameters of the structure were identified by the time-domain approach and verified by theoretical and laboratory tests. The results showed that for the human-structure coupled system, nature frequency of the structure decreased and damping increased. Moreover, the increase of damping with passive person was bigger than that with active person.