The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficie...The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficient is proposed. The original time delay information is transfered into the delay between the autocorrelation and cross-correlation function, and the precise estimating result by wave-comparison is given. The algorithm proposed here is also compared with other algorithms and its advantages over other algorithms are proved. The theoretical analysis and simulation show the effectiveness of the proposed algorithm.展开更多
A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the l...A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the least square with equal space in whole interval and the target prediction point is found out. According to the requirements of block motion estimation(BME) algorithm,the template divided into some macro blocks. The searching process is conducted by using diamond search algorithm around the prediction point and the optimal motion vector of each block is calculated. A point corresponding to the motion vector with the best matching is taken as a rough matching point of the template. The relation of relative position between the block with matching point and the searching area determined to decide whether to conduct precise matching search or to construct a new search area in the gradient direction. The target tracking experiment results show that over 70% time cost can be reduced caompared with the conventional correlation matching algorithm based on full search method.展开更多
Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This pap...Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.展开更多
This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of th...This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of the DCN are the major challenge.In our deep estimator framework,one DCN is used for spectrum estimation with quantization errors,and the remaining two DCNs are used to estimate quantization errors.We propose training our estimator using the spatial sampled covariance matrix directly as our deep estimator’s input without any feature extraction operation.Then,we reconstruct the original spatial spectrum from the spectrum estimate and quantization errors estimate.Also,the feasibility of the proposed deep estimator is analyzed in detail in this paper.Once the deep estimator is appropriately trained,it can recover the correlated signals’spatial spectrum fast and accurately.Simulation results show that our estimator performs well in both resolution and estimation error compared with the state-of-the-art algorithms.展开更多
This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinat...This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
交叉熵法可显著加速电网可靠性评估,但往往聚焦于独立随机变量,若将其拓展至相关性变量可进一步提升加速性能。为有效获取相关性变量的重要抽样密度函数以实现其重要抽样,针对相关性建模中广泛使用的核密度估计模型(kernel density esti...交叉熵法可显著加速电网可靠性评估,但往往聚焦于独立随机变量,若将其拓展至相关性变量可进一步提升加速性能。为有效获取相关性变量的重要抽样密度函数以实现其重要抽样,针对相关性建模中广泛使用的核密度估计模型(kernel density estimation,KDE)开展了交叉熵优化研究。因KDE模型不属于指数分布家族,传统交叉熵优化难以实施,故利用复合抽样算法特点提出了新颖的直接交叉熵优化方法,推导出KDE模型最优权重参数的解析表达式。因权重参数数量级较小,直接优化易导致准确性退化,故基于子集模拟思想进一步提出间接交叉熵优化方法,将较小的权重参数优化转换成较大的条件概率优化,提升了优化准确性。通过MRTS79和MRTS96可靠性测试系统的评估分析,验证了所提方法在含相关性变量电网可靠性评估中的高效加速性能。展开更多
基金supported partly by the National Natural Science Foundation of China(6037208130570475)the Education Ministry Doctoral Degree Foundation of China(20050141025).
文摘The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficient is proposed. The original time delay information is transfered into the delay between the autocorrelation and cross-correlation function, and the precise estimating result by wave-comparison is given. The algorithm proposed here is also compared with other algorithms and its advantages over other algorithms are proved. The theoretical analysis and simulation show the effectiveness of the proposed algorithm.
基金Sponsored by the National Defense Pre-Research Foundation of China
文摘A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the least square with equal space in whole interval and the target prediction point is found out. According to the requirements of block motion estimation(BME) algorithm,the template divided into some macro blocks. The searching process is conducted by using diamond search algorithm around the prediction point and the optimal motion vector of each block is calculated. A point corresponding to the motion vector with the best matching is taken as a rough matching point of the template. The relation of relative position between the block with matching point and the searching area determined to decide whether to conduct precise matching search or to construct a new search area in the gradient direction. The target tracking experiment results show that over 70% time cost can be reduced caompared with the conventional correlation matching algorithm based on full search method.
文摘Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.
文摘This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of the DCN are the major challenge.In our deep estimator framework,one DCN is used for spectrum estimation with quantization errors,and the remaining two DCNs are used to estimate quantization errors.We propose training our estimator using the spatial sampled covariance matrix directly as our deep estimator’s input without any feature extraction operation.Then,we reconstruct the original spatial spectrum from the spectrum estimate and quantization errors estimate.Also,the feasibility of the proposed deep estimator is analyzed in detail in this paper.Once the deep estimator is appropriately trained,it can recover the correlated signals’spatial spectrum fast and accurately.Simulation results show that our estimator performs well in both resolution and estimation error compared with the state-of-the-art algorithms.
基金supported in part by the National Natural Science Foundation of China (60774071)the National High Technology Research and Development Program of China (863 Program) (2008AA121302)+1 种基金the Major State Basic Research Development Program of China (973 Program) (2009CB724000)the State Scholarship Fund of China
文摘This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.
文摘交叉熵法可显著加速电网可靠性评估,但往往聚焦于独立随机变量,若将其拓展至相关性变量可进一步提升加速性能。为有效获取相关性变量的重要抽样密度函数以实现其重要抽样,针对相关性建模中广泛使用的核密度估计模型(kernel density estimation,KDE)开展了交叉熵优化研究。因KDE模型不属于指数分布家族,传统交叉熵优化难以实施,故利用复合抽样算法特点提出了新颖的直接交叉熵优化方法,推导出KDE模型最优权重参数的解析表达式。因权重参数数量级较小,直接优化易导致准确性退化,故基于子集模拟思想进一步提出间接交叉熵优化方法,将较小的权重参数优化转换成较大的条件概率优化,提升了优化准确性。通过MRTS79和MRTS96可靠性测试系统的评估分析,验证了所提方法在含相关性变量电网可靠性评估中的高效加速性能。