Understanding the physical features of the flow noise for an axisymmetric body is important for improving the performance of a sonar mounted on an underwater platform. Analytical calculation and numerical analysis of ...Understanding the physical features of the flow noise for an axisymmetric body is important for improving the performance of a sonar mounted on an underwater platform. Analytical calculation and numerical analysis of the physical features of the flow noise for an axisymmetric body are presented and a simulation scheme for the noise correlation on the hydrophones is given. It is shown that the numerical values of the flow noise coincide well with the analytical values. The main physical features of flow noise are obtained. The flow noises of two different models are compared and a model with a rather optimal fore-body shape is given. The flow noise in horizontal symmetry profile of the axisymmetric body is non-uniform, but it is omni-directional and has little difference in the cross section of the body. The loss of noise diffraction has a great effect on the flow noise from boundary layer transition. Meanwhile, based on the simulation, the noise power level increases with velocity to approximately the fifth power at high frequencies, which is consistent with the experiment data reported in the literature. Furthermore, the flow noise received by the acoustic array has lower correlation at a designed central frequency, which is important for sonar system design.展开更多
Correlation power analysis(CPA) has become a successful attack method about crypto-graphic hardware to recover the secret keys. However, the noise influence caused by the random process interrupts(RPIs) becomes an imp...Correlation power analysis(CPA) has become a successful attack method about crypto-graphic hardware to recover the secret keys. However, the noise influence caused by the random process interrupts(RPIs) becomes an important factor of the power analysis attack efficiency, which will cost more traces or attack time. To address the issue, an improved method about empirical mode decomposition(EMD) was proposed. Instead of restructuring the decomposed signals of intrinsic mode functions(IMFs), we extract a certain intrinsic mode function(IMF) as new feature signal for CPA attack. Meantime, a new attack assessment is proposed to compare the attack effectiveness of different methods. The experiment shows that our method has more excellent performance on CPA than others. The first and the second IMF can be chosen as two optimal feature signals in CPA. In the new method, the signals of the first IMF increase peak visibility by 64% than those of the tradition EMD method in the situation of non-noise. On the condition of different noise interference, the orders of attack efficiencies are also same. With external noise interference, the attack effect of the first IMF based on noise with 15dB is the best.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
为了评估Piccolo密码算法的功耗分析安全性,该文提出一种针对Piccolo末轮的攻击模型,基于SASEBO(Side-channel Attack Standard Evaluation BOard)实测功耗数据对该算法进行了相关性功耗分析攻击。针对Piccolo末轮运算中包含白化密钥的...为了评估Piccolo密码算法的功耗分析安全性,该文提出一种针对Piccolo末轮的攻击模型,基于SASEBO(Side-channel Attack Standard Evaluation BOard)实测功耗数据对该算法进行了相关性功耗分析攻击。针对Piccolo末轮运算中包含白化密钥的特点,将末轮攻击密钥(包括轮密钥RK24L,RK24R,WK2,WK3)分成4段子密钥,逐个完成各个子密钥的攻击,使80位种子密钥的搜索空间从280降低到(2×220+2×212+216),使种子密钥的恢复成为可能。攻击结果表明,在实测功耗数据情况下,3000条功耗曲线即可恢复80位种子密钥,证实了该攻击模型的有效性和Piccolo硬件面向功耗分析的脆弱性,研究并采取切实有效的防护措施势在必行。展开更多
基金Project supported by the National Natural Science Foundational of China (Grant No. 10774119)the Program for New Century Excellent Talents in University, China (Grant No. NCET-08-0455)+1 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No. SJ08F07)the Foundation of National Laboratory of Acoustic and the Foundation for Fundamental Research of Northwestern Polytechnic University, China (Grant No. 2007004)
文摘Understanding the physical features of the flow noise for an axisymmetric body is important for improving the performance of a sonar mounted on an underwater platform. Analytical calculation and numerical analysis of the physical features of the flow noise for an axisymmetric body are presented and a simulation scheme for the noise correlation on the hydrophones is given. It is shown that the numerical values of the flow noise coincide well with the analytical values. The main physical features of flow noise are obtained. The flow noises of two different models are compared and a model with a rather optimal fore-body shape is given. The flow noise in horizontal symmetry profile of the axisymmetric body is non-uniform, but it is omni-directional and has little difference in the cross section of the body. The loss of noise diffraction has a great effect on the flow noise from boundary layer transition. Meanwhile, based on the simulation, the noise power level increases with velocity to approximately the fifth power at high frequencies, which is consistent with the experiment data reported in the literature. Furthermore, the flow noise received by the acoustic array has lower correlation at a designed central frequency, which is important for sonar system design.
基金supported by The National Natural Science Foundation of China under Grants 61571063,61501100 and 61472357
文摘Correlation power analysis(CPA) has become a successful attack method about crypto-graphic hardware to recover the secret keys. However, the noise influence caused by the random process interrupts(RPIs) becomes an important factor of the power analysis attack efficiency, which will cost more traces or attack time. To address the issue, an improved method about empirical mode decomposition(EMD) was proposed. Instead of restructuring the decomposed signals of intrinsic mode functions(IMFs), we extract a certain intrinsic mode function(IMF) as new feature signal for CPA attack. Meantime, a new attack assessment is proposed to compare the attack effectiveness of different methods. The experiment shows that our method has more excellent performance on CPA than others. The first and the second IMF can be chosen as two optimal feature signals in CPA. In the new method, the signals of the first IMF increase peak visibility by 64% than those of the tradition EMD method in the situation of non-noise. On the condition of different noise interference, the orders of attack efficiencies are also same. With external noise interference, the attack effect of the first IMF based on noise with 15dB is the best.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
文摘为了评估Piccolo密码算法的功耗分析安全性,该文提出一种针对Piccolo末轮的攻击模型,基于SASEBO(Side-channel Attack Standard Evaluation BOard)实测功耗数据对该算法进行了相关性功耗分析攻击。针对Piccolo末轮运算中包含白化密钥的特点,将末轮攻击密钥(包括轮密钥RK24L,RK24R,WK2,WK3)分成4段子密钥,逐个完成各个子密钥的攻击,使80位种子密钥的搜索空间从280降低到(2×220+2×212+216),使种子密钥的恢复成为可能。攻击结果表明,在实测功耗数据情况下,3000条功耗曲线即可恢复80位种子密钥,证实了该攻击模型的有效性和Piccolo硬件面向功耗分析的脆弱性,研究并采取切实有效的防护措施势在必行。