Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at hig...Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.展开更多
文摘Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.