期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
3D printed hybrid rocket fuels with μAl core-shell particles coated with polyvinylidene fluoride and polydopamine: Enhanced combustion characteristics
1
作者 Qihang Chen Xiaolong Fu +6 位作者 Weitao Yang Suhang Chen Zhiming Guo Rui Hu Huijie Zhang Lianpeng Cui Xu Xia 《Defence Technology(防务技术)》 2025年第4期59-70,共12页
3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have... 3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion. 展开更多
关键词 Hybrid propulsion Regression rate 3D print fuels Micro aluminum core-shell mAl@PDA@PVDF
在线阅读 下载PDF
The combustion reactivity of core-shell Al/Fluoropolymers and application in RDX-based explosives
2
作者 Ting Liu Jian Wang +6 位作者 Jie Chen Cui Nie Yaofeng Mao Fude Nie Ruolei Zhong Wei Cao Jun Wang 《Defence Technology(防务技术)》 2025年第9期30-39,共10页
Aluminum(Al)powder is widely applied in thermobaric explosives due to its high energy density and favorable reaction kinetics.However,the inert oxide layer(Al_(2)O_(3))on Al particles limits combustion reactivity and ... Aluminum(Al)powder is widely applied in thermobaric explosives due to its high energy density and favorable reaction kinetics.However,the inert oxide layer(Al_(2)O_(3))on Al particles limits combustion reactivity and energy efficiency.Fluoride-based surface modification has been developed as an effective approach to address this issue.Here,four classical fluoropolymers(F11,F14,PVDF,PTFE)are employed as coatings to prepare core-shell Al/Fluoropolymer.The combustion experimental results demonstrate that the core-shell Al/PTFE exhibits the highest flame propagation rate(52.88 mm·ms^(-1))and pressure output(109.02 k Pa)performance.Consequently,core-shell Al/PTFE is selected as a high-energy fuel to prepare RDX/Al/PTFE microspheres via the emulsion and solvent evaporation method,which can enhance the energy performance of RDX.The effects of the core-shell Al/PTFE ratio and RDX content on the combustion heat and pressure output are systematically investigated.The peak pressure reaches a maximum of 187.8 k Pa when the mass ratio of RDX,Al,and PTFE is 60:25:10.Additionally,RDX/Al/PTFE microspheres exhibit significantly higher laser-induced air shock velocities,detonation heat,and detonation pressure than those of pure RDX and RDX/Al.The mechanism underlying the enhanced reactivity and energetic performance is attributed to the ability of PTFE to etch the inert Al_(2)O_(3)shell on the surface of Al particles,thereby improving post-combustion reactions and significantly increasing the overall energy output of RDX explosives.This work offers a novel design strategy for high-energy structural thermobaric explosives for the practical applications. 展开更多
关键词 core-shell Al/Fluoropolymers RDX/Al/PTFE Microspheres Combustion reactivity Energetic performance
在线阅读 下载PDF
Interfacial reinforcement of core-shell HMX@energetic polymer composites featuring enhanced thermal and safety performance 被引量:2
3
作者 Binghui Duan Hongchang Mo +3 位作者 Bojun Tan Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期387-399,共13页
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves... The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns. 展开更多
关键词 HMX crystals Polyalcohol bonding agent Energetic polymer core-shell structure Interfacial reinforcement
在线阅读 下载PDF
PREPARATION OF ACRYLIC SUPERABSORBENTS WITH CORE-SHELL STRUCTURE BY MODIFIED INVERSE SUSPENSION POLYMERIZATION 被引量:10
4
作者 崔英德 郭建维 +1 位作者 廖列文 尹国强 《化工学报》 EI CAS CSCD 北大核心 2000年第6期723-724,共2页
关键词 SUPERABSORBENTS core-shell structure inverse suspension
在线阅读 下载PDF
Formation and characterization of core-shell CL-20/TNT composite prepared by spray-drying technique 被引量:12
5
作者 Chang-gui Song Xiao-dong Li +3 位作者 Yue Yang Hui-min Liu Ying-xin Tan Jing-yu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1936-1943,共8页
The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene(CL-20/TNT)composite was prepared by spray-drying method in which sensitive high energy explosive(CL-20)was coated with in... The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene(CL-20/TNT)composite was prepared by spray-drying method in which sensitive high energy explosive(CL-20)was coated with insensitive explosive(TNT).The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy(SEM),Transmission electron microscopy(TEM),Laser particle size analyzer,X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),differential scanning calorimetry(DSC),impact sensitivity test and detonation performance.The results of SEM,TEM,XPS and XRD show that e-CL-20 particles are coated by TNT.When the ratio of CL-20/TNT is 75/25,core-shell structure is well formed,and thickness of the shell is about 20e30 nm.And the analysis of heat and impact show that with the increase of TNT content,the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material(CL-20),but also greatly reduce the impact sensitivity.Compared with the CL-20/TNT mixture(75/25)at the same ratio,the characteristic drop height of core-shell CL-20/TNT composite(75/25)increased by 47.6%and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites.Therefore,the preparation of the core-shell composites can be regarded as a unique means,by which the composites are characterized by controllable decomposition rate,high energy and excellent mechanical sensitivity and could be applied to propellants and other fields. 展开更多
关键词 Energetic materials CL-20(2 4 6 8 10 12-hexanitro-2 4 6 8 10 12-hexaazaisowurtzitane) TNT(2 4 6-Trinitrotoluene) Spray-drying method core-shell structure
在线阅读 下载PDF
Enhanced thermal- and impact-initiated reactions of PTFE/Al energetic materials through ultrasonic-assisted core-shell construction 被引量:3
6
作者 Zhou-yang Wu Jin-xu Liu +5 位作者 Song Zhang Xian-qing Liu Xiao Xu Wei-zhe Ma Shu-kui Li Chuan He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1362-1368,共7页
A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTF... A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures. 展开更多
关键词 PTFE/Al core-shell structure Energetic materials Ultrasonic-assisted mixing
在线阅读 下载PDF
Preparation of the core-shell HMX@CS microparticles by biological excitation:Excellent hydrophobic-oleophilic properties and decreased impact sensitivity effectively 被引量:1
7
作者 Yue-qi Li Heng Zhai +2 位作者 Ping Ye Xing-quan Zhang Chang-ping Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期855-861,共7页
Inspired by the phenomenon of superhydrophobic plants and animals in nature,1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)@copper stearate(CS)core-shell composites with similar properties was prepared.A rough shell layer... Inspired by the phenomenon of superhydrophobic plants and animals in nature,1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)@copper stearate(CS)core-shell composites with similar properties was prepared.A rough shell layer on the surface of the HMX was observed by scanning electron microscopy(SEM),and a series of in-depth characterization confirmed the successful generation of CS and the coreshell structure of the samples.Differential scanning calorimeter(DSC)proves that the crystal transition temperature(204℃)and high temperature decomposition exothermal temperature(284℃)of HMX@CS is almost unchanged compared with pure HMX,which means HMX and CS have good compatibility.Then,the H50 of the samples also increased continuously(16.6 cm→33.7 cm)when the CS shell content increased from 1%to 5%,indicating that the CS shell has a certain buffering performance,and CS will absorb some heat and melt under the stimulation of impact due to its low melting point,which improved impact sensitivity of HMX effectively further.Moreover,HMX@CS has excellent hydrophobic and oleophilic performance,shows excellent wettability with lipid binder,and samples with appropriate CS shell content can continue to combustion stably after covering water.This waterproof and low sensitivity coating provides a new way for the development of multifunctional energetic materials. 展开更多
关键词 HMX core-shell Sensitivity Hydrophobic-oleophilic Mechanical properties
在线阅读 下载PDF
Template synthesis of copper azide primary explosive through Cu2O@HKUST-1 core-shell composite prepared by “bottle around ship” method 被引量:1
8
作者 Xu-wen Liu Yan Hu +4 位作者 Jia-heng Hu Jia-xin Su Cai-min Yang Ying-hua Ye Rui-qi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期99-111,共13页
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi... Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials. 展开更多
关键词 Composite energetic materials Copper azide CARBONIZATION Template method core-shell composite Electrostatic safety
在线阅读 下载PDF
Immobilization of metalloporphyrins on CeO_2@SiO_2 with a core-shell structure prepared via microemulsion method for catalytic oxidation of ethylbenzene 被引量:1
9
作者 沈丹华 吉琳韬 +4 位作者 付玲玲 董旭龙 刘志刚 刘强 刘世明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期862-867,共6页
Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin cat... Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst. 展开更多
关键词 Ce O2@Si O2 core-shell structure metalloporphyrin ethylbenzene oxidation
在线阅读 下载PDF
MnHCF/MnO_2 Core-shell Nanostructures as Cathode Material for Supercapacitors with High Energy Density
10
作者 WANG Yu ZHONG Hao +2 位作者 YAN Nan HU Haibo CHEN Qianwang 《矿物学报》 CAS CSCD 北大核心 2013年第S1期104-104,共1页
A nanocomposite of manganese dioxide coated manganese hexacyanoferrate was synthesized by a facile co-precipitation method and tested as active electrode material for an electrochemical supercapacitor. A way called &q... A nanocomposite of manganese dioxide coated manganese hexacyanoferrate was synthesized by a facile co-precipitation method and tested as active electrode material for an electrochemical supercapacitor. A way called "Deep electro-oxidation" was used to generate manganese dioxide coated layer for stabilizing the electrode material. The structure and ingredient of the resulting MnHCF/MnO2 composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray Photoelectron Spectroscopy. Electrochemical testing showed a capacitance of 225.6 F/g at a sweep rate of 5 mV/s within a voltage range of 1.3 V, and high energy density of 37.2 Wh/kg at a current density of 0.5 A/g in galvanostatic charge/discharge cycling. It is suggested that the two different components, manganese hexacyanoferrate core and manganese dioxide shell, lead to an integrated electrochemical behavior, and an enhanced capacitor. The electrochemical testing and corresponding XPS analysis also demonstrated that the manganese coordinated by cyanide groups via nitrogen atoms in MnHCF did not get involved in the charge storage process during potential cycles. 展开更多
关键词 SUPERCAPACITORS deep electro-oxidation manganese HEXACYANOFERRATE core-shell NANOSTRUCTURES
在线阅读 下载PDF
Erbium-sensitized Broadband Near-infrared Luminescence in Nanoparticles
11
作者 ZHAO Yu HUANG Jinshu +2 位作者 LU Kecen HUANG Mengyue ZHOU Bo 《发光学报》 北大核心 2025年第7期1241-1248,共8页
Broadband near-infrared(NIR)luminescent materials have shown great promise in applications such as optical communication,biomedicine,and optoelectronic devices.However,the current research is focused on phos⁃phors and... Broadband near-infrared(NIR)luminescent materials have shown great promise in applications such as optical communication,biomedicine,and optoelectronic devices.However,the current research is focused on phos⁃phors and glasses,and it is important to develop broadband NIR luminescent nanomaterials.Here,we report an erbi⁃um-sensitized core-shell nanocrystal design for broadband NIR emission.Based on the structural design with suitable dopings of Tm^(3+)and Ho^(3+),the broadband NIR emission covering 1.5-2.1μm region is achieved under 980 nm and 808 nm excitations.Moreover,the emission intensity is further enhanced by introducing Yb^(3+)and Nd^(3+)into the sam⁃ple,respectively,and the energy transfer processes between them are systematically discussed.Our results present a novel approach for developing broadband NIR luminescent materials and devices. 展开更多
关键词 broadband near-infrared luminescence lanthanide ions core-shell structure energy transfer
在线阅读 下载PDF
Investigation of the ignition and combustion characteristics of Al@AP incorporated with graded aluminum powder
12
作者 Su-Lan Yang Jing Wang +4 位作者 Zhi-Yu Zhang Kan Xie Ming-Hui Yu Yue-Ke Xiong Bin Tian 《Defence Technology(防务技术)》 2025年第8期225-235,共11页
The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have ... The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have been incorporated into the typical Al@AP composites through the spray drying technique.The thermal behavior,ignition and combustion characteristics were comprehensively evaluated and compared.The experimental results showed that with the varying inclusion of the graded Al,the heat of reaction exhibited a significant change,ranging from 9090 J·g^(-1) to 11036 J·g^(-1),which was strongly dependent on the particle size of Al.The combination of Al with diverse range of particle sizes in graded configuration serves to significantly enhance the decomposition of AP,resulting in the disappearance of the LTD stage and a conspicuous decrease of at least 11.7℃ in the peak temperature of the HTD.Furthermore,the maximum burning rate achieved by the Al-3@AP composite was 33.6 mm·s^(-1),which was exactly twice as high as that of the graded Al-1@AP composite with the lowest burning rate.Diffraction peaks corresponding to unburned Al were detected in the condensed combustion products of Al-1@AP,and the combustion images clearly indicated an incomplete combustion tendency for this sample.In contrast,a well-designed gradation of Al powders,such as a combination of fine Al powders with a particle size below 5μm,has proven to be the most conducive to enhancing the combustion efficiency of the composites. 展开更多
关键词 Ignition performance Thermal reactivity core-shell structure Graded Al
在线阅读 下载PDF
Optical Properties of GaAs/AlGaAs Nanowires Grown on Pre-etched Si Substrates
13
作者 ZHANG Zhihong MENG Bingheng +2 位作者 WANG Shuangpeng KANG Yubin WEI Zhipeng 《发光学报》 EI CAS CSCD 北大核心 2024年第10期1639-1646,共8页
GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nan... GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices. 展开更多
关键词 GaAs nanowires GaAs/AlGaAs core-shell structure crystal phase optical property
在线阅读 下载PDF
灰霾粒子与水云粒子不同混合方式对量子卫星通信性能影响 被引量:9
14
作者 聂敏 常乐 +2 位作者 杨光 张美玲 裴昌幸 《光子学报》 EI CAS CSCD 北大核心 2017年第7期10-19,共10页
为了研究混合粒子的不同混合方式对星地量子卫星通信的影响,根据灰霾粒子与水云粒子的谱分布函数,以及不同混合方式下的消光系数,提出了外混合方式中星地量子信道衰减的计算关系,建立了内混合方式中的Core-shell信道衰减模型;分析了在... 为了研究混合粒子的不同混合方式对星地量子卫星通信的影响,根据灰霾粒子与水云粒子的谱分布函数,以及不同混合方式下的消光系数,提出了外混合方式中星地量子信道衰减的计算关系,建立了内混合方式中的Core-shell信道衰减模型;分析了在不同混合方式下,混合粒子的粒径比与信道平均保真度、信道误码率之间的定量关系.仿真结果表明,当混合粒子的粒径比分别为0.2和0.8时,外混合粒子对应信道容量、信道平均保真度、信道误码率分别为0.39和0.27,0.8和0.8,0.003和0.009;内混合粒子对应信道容量、信道平均保真度、信道误码率分别为0.8和0.21,0.94和0.81,0.018和0.021.由此可见,灰霾粒子和水云粒子的不同混合方式对量子卫星通信性能的影响有显著差别.因此,在实际的量子卫星通信系统中,应根据混合粒子的不同混合方式自适应调整系统的各项参量,以提高星地量子通信链路的可靠性. 展开更多
关键词 量子通信 消光系数 core-shell信道衰减模型 混合气溶胶粒子 粒径比 信道容量 保真度 误码率
在线阅读 下载PDF
透明质酸修饰的地塞米松核壳纳米粒的制备及表征 被引量:1
15
作者 王静 甘莉 +1 位作者 甘勇 刘建平 《中国药科大学学报》 CAS CSCD 北大核心 2013年第2期117-123,共7页
探讨透明质酸修饰的地塞米松核壳纳米粒的制备方法,并对其理化性质及释药行为等进行考察。首先采用薄膜分散水化-挤膜法制备核壳纳米粒(LCS-NPs),单因素研究多种处方组成对LCS-NPs性质的影响。随后用透明质酸(HA)与二油酰磷脂酰乙醇胺(D... 探讨透明质酸修饰的地塞米松核壳纳米粒的制备方法,并对其理化性质及释药行为等进行考察。首先采用薄膜分散水化-挤膜法制备核壳纳米粒(LCS-NPs),单因素研究多种处方组成对LCS-NPs性质的影响。随后用透明质酸(HA)与二油酰磷脂酰乙醇胺(DOPE)的键合物(HA-DOPE)修饰LCS-NPs,制得HA-LCS-NPs。采用粒度仪和投射电镜分别考察HA-LCS-NPs的粒径、电位、微观形态和结构组成。以地塞米松为模型药物,考察载药HA-LCS-NPs的包封率和体外释药行为。HA-LCS-NPs在透射电镜下呈现清晰的核壳结构,平均粒径为(189±10.3)nm。HA-LCS-NPs对地塞米松的包封率和载药量分别为27.4%和5.9%,72 h累积释放率低于40%。结果表明,薄膜分散水化-挤膜法制备的LCS-NPs经HA-DOPE修饰,可得到具有明显核壳结构的纳米载体,并实现有效的药物包裹和良好的缓释特征。 展开更多
关键词 透明质酸 核壳纳米粒 地塞米松 缓释 制备 表征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部