Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Two-dimensional(2D)moirésuperlattices with a small twist in orientation exhibit a broad range of physical properties due to the complicated intralayer and interlayer interactions modulated by the twist angle.Here...Two-dimensional(2D)moirésuperlattices with a small twist in orientation exhibit a broad range of physical properties due to the complicated intralayer and interlayer interactions modulated by the twist angle.Here,we report a metal-semiconductor phase transition in homojunction moirésuperlattices of NiS_2 and PtTe_2 with large twist angles based on high-throughput screening of 2D materials MX_(2)(M=Ni,Pd,Pt;X=S,Se,Te)via density functional theory(DFT)calculations.Firstly,the calculations for different stacking configurations(AA,AB and AC)reveal that AA stacking ones are stable for all the bilayer MX_(2).The metallic or semiconducting properties of these 2D materials remain invariable for different stacking without twisting except for NiS_2 and PtTe_2.For the twisted configurations,NiS_2 transfers from metal to semiconductor when the twist angles are 21.79°,27.79°,32.20°and 60°.PtTe_2 exhibits a similar transition at 60°.The phase transition is due to the weakened d-p orbital hybridization around the Fermi level as the interlayer distance increases in the twisted configurations.Further calculations of untwisted bilayers with increasing interlayer distance demonstrate that all the materials undergo metal-semiconductor phase transition with the increased interlayer distance because of the weakened d-p orbital hybridization.These findings provide fundamental insights into tuning the electronic properties of moirésuperlattices with large twist angles.展开更多
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten...In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.展开更多
Reversible solid oxide cells(RSOCs)are capable of converting various energy resources,between electricity and chemical fuels,with high efficiency and flexibility,making them suitable for grid balancing and renewable e...Reversible solid oxide cells(RSOCs)are capable of converting various energy resources,between electricity and chemical fuels,with high efficiency and flexibility,making them suitable for grid balancing and renewable energy consumption.However,the practical application of RSOCs is still limited by the insufficient activity and stability of the electrodes in different operating modes.Herein,a highly efficient symmetrical electrode composed of La_(0.3)Sr_(0.6)Ti_(0.1)Co_(0.2)Fe_(0.7)O_(3-δ)(LSTCF)nanofibers and in situ exsolved Co_(3)Fe_(7) nanoparticles is developed for boosting the performance of RSOCs.The reversible phase transition,high activity and stability of the electrode have been confirmed by a combination of experimental(e.g.,transmission electron microscopy and X-ray absorption fine structure)and computational studies.Electrolyte-supported RSOCs with the symmetrical electrode demonstrate excellent catalytic activity and stability,achieving a high peak power density of 0.98 W cm^(-2)in the fuel cell mode using H_(2)as the fuel(or 0.53 W cm^(-2)using CH_(4)as the fuel)and a high current density of 1.09 A cm^(-2) at 1.4 V in the CO_(2)electrolysis mode(or 1.03 A cm^(-2)at 1.3 V for H_(2)O electrolysis)at 800℃while maintaining excellent durability for over 100 h.展开更多
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ...Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.展开更多
Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied...Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied and discussed.In this paper,the corresponding imaging fringe formula of the three-phase grating interferometer is provided.At the same time,the similarities and differences between the three-phase grating interferometer and the dual-phase grating interferometer are investigated and verified,and that the three-phase grating interferometer can produce large-period moiréfringes without using the analyzing grating is demonstrated experimentally.Finally,a simple method of designing three-phase grating and multi-grating imaging systems from geometric optics based on the thin-lens theory of gratings is presented.These theoretical formulas and experimental results provide optimization tools for designing three-phase grating interferometer systems.展开更多
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ...The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.展开更多
Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th...Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.展开更多
Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,...Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.展开更多
Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods.Unfortu-nately,its application in optical coherence tomography(OCT)is often hindered by sensitivity to noise,which ...Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods.Unfortu-nately,its application in optical coherence tomography(OCT)is often hindered by sensitivity to noise,which leads to ad-ditive ringing artifacts.These artifacts considerably degrade the quality of deconvolved images,thereby limiting its effect-iveness in OCT imaging.In this study,we propose a framework that integrates numerical random phase masks into the deconvolution process,effectively eliminating these artifacts and enhancing image clarity.The optimized joint operation of an iterative Richardson-Lucy deconvolution and numerical synthesis of random phase masks(RPM),termed as De-conv-RPM,enables a 2.5-fold reduction in full width at half-maximum(FWHM).We demonstrate that the Deconv-RPM method significantly enhances image clarity,allowing for the discernment of previously unresolved cellular-level details in nonkeratinized epithelial cells ex vivo and moving blood cells in vivo.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-...A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.展开更多
Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is fe...Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.展开更多
The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed b...The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.展开更多
Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelate...Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films.展开更多
Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it ...Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it is generally believed that the phase of the hopping term does not affect the localization properties of the system,so the calculation of the phase is often ignored in the study of localization.Here,we introduce a quasiperiodic model and demonstrate that the phase change of the hopping term can significantly alter the localization properties of the system through detailed numerical simulations,such as the inverse participation ratio and multifractal analysis.This phase-induced localization transition provides valuable information for the study of localization physics.展开更多
Phase transitions are both thermodynamically and quantum-mechanically ubiquitous in nature and laboratories,and their understanding remains one of the most active issues in modern physics and related disciplines.The L...Phase transitions are both thermodynamically and quantum-mechanically ubiquitous in nature and laboratories,and their understanding remains one of the most active issues in modern physics and related disciplines.The Landau theory provides a general framework to describe phenomenologically phase transitions by introducing order parameters and associated symmetry breaking.This theory is also taken as a starting point to explore critical phenomena in connection with phase transitions in the renormalization group,which provides a complete theoretical description of behaviors close to critical points.In this context,the microscopic mechanism of phase transitions remains unclear.In this study,we explore the microscopic mechanism of the superradiant phase transition in the quantum Rabi model(QRM).First,we perform a diagonalization operation in an operator space to obtain three fundamental patterns,denoted asλ_(1),λ_(2),and λ_(3),involved in the QRM.Then,we explicitly analyze the energy evolutions of these patterns with increasing coupling strength.The observed characteristic behaviors reveal the microscopic mechanism of the superradiant phase transition as a consequence of competition between patterns due to different phase relations.In other words,with increasing coupling strength,the patternλ1 drives the phase transition,the patternλ_(2) exhibits a similar response speed but less energy compensation than the patternλ1,and the pattern λ_(3) exhibits a slow response speed but plays a key role in the balance between it and the pattern λ_(1),which stabilizes the new phase.This type of dissecting mechanism explains why and how the superradiant phase transition occurs in the QRM and paves the way for exploring the microscopic mechanism of phase transitions that occur frequently in nature.展开更多
The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)...The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)and InOOH are formed,which are the precursors of stable cubic(c-In_(2)O_(3))and metastable rhombohedral(rh-In_(2)O_(3))phases,respectively.A transition from c-In_(2)O_(3)to rh-In_(2)O_(3)is observed with the addition of CeO_(2).The introduction of cerium into rh-In_(2)O_(3)results in a decrease in the sensor response to hydrogen,while it increases in composites based on c-In_(2)O_(3).The data on the sensor activity of the composites correlate with XPS results in which CeO_(2)causes a decrease in the concentrations of chemisorbed oxygen and oxygen vacancies in rh-In_(2)O_(3).The reverse situation is observed in composites based on c-In_(2)O_(3).Compared to In_(2)O_(3)and CeO_(2)–In_(2)O_(3)obtained by other methods,the synthesized composites demonstrate maximum response to H_(2)at low temperatures by 70–100℃,and have short response time(0.2–0.5 s),short recovery time(6–7 s),and long-term stability.A model is proposed for the dependence of sensitivity on the direction of electron transfer between In_(2)O_(3)and CeO_(2).展开更多
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52472153,11704081,62488201)the National Key Research and Development Program of China(Grant No.2022YFA1204100)+2 种基金National Science and Technology Innovation Talent Cultivation Program(Grant No.2023BZRC016)Guangxi Natural Science Foundation(Grant No.2020GXNSFAA297182)the special fund for“Guangxi Bagui Scholars”。
文摘Two-dimensional(2D)moirésuperlattices with a small twist in orientation exhibit a broad range of physical properties due to the complicated intralayer and interlayer interactions modulated by the twist angle.Here,we report a metal-semiconductor phase transition in homojunction moirésuperlattices of NiS_2 and PtTe_2 with large twist angles based on high-throughput screening of 2D materials MX_(2)(M=Ni,Pd,Pt;X=S,Se,Te)via density functional theory(DFT)calculations.Firstly,the calculations for different stacking configurations(AA,AB and AC)reveal that AA stacking ones are stable for all the bilayer MX_(2).The metallic or semiconducting properties of these 2D materials remain invariable for different stacking without twisting except for NiS_2 and PtTe_2.For the twisted configurations,NiS_2 transfers from metal to semiconductor when the twist angles are 21.79°,27.79°,32.20°and 60°.PtTe_2 exhibits a similar transition at 60°.The phase transition is due to the weakened d-p orbital hybridization around the Fermi level as the interlayer distance increases in the twisted configurations.Further calculations of untwisted bilayers with increasing interlayer distance demonstrate that all the materials undergo metal-semiconductor phase transition with the increased interlayer distance because of the weakened d-p orbital hybridization.These findings provide fundamental insights into tuning the electronic properties of moirésuperlattices with large twist angles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532113,11475170,11905041)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18)Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0244)。
文摘In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.
基金supported by the National Natural Science Foundation of China(No.52377212 and 51877173)program of Beijing Huairou Laboratory(ZD2022006A)+2 种基金the Key R&D Project of Shaanxi Province(2023-YBGY-057)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22314,EIPE22306)the Natural Science Basic Research Program of Shaanxi(No.2023-JC-QN-0483).
文摘Reversible solid oxide cells(RSOCs)are capable of converting various energy resources,between electricity and chemical fuels,with high efficiency and flexibility,making them suitable for grid balancing and renewable energy consumption.However,the practical application of RSOCs is still limited by the insufficient activity and stability of the electrodes in different operating modes.Herein,a highly efficient symmetrical electrode composed of La_(0.3)Sr_(0.6)Ti_(0.1)Co_(0.2)Fe_(0.7)O_(3-δ)(LSTCF)nanofibers and in situ exsolved Co_(3)Fe_(7) nanoparticles is developed for boosting the performance of RSOCs.The reversible phase transition,high activity and stability of the electrode have been confirmed by a combination of experimental(e.g.,transmission electron microscopy and X-ray absorption fine structure)and computational studies.Electrolyte-supported RSOCs with the symmetrical electrode demonstrate excellent catalytic activity and stability,achieving a high peak power density of 0.98 W cm^(-2)in the fuel cell mode using H_(2)as the fuel(or 0.53 W cm^(-2)using CH_(4)as the fuel)and a high current density of 1.09 A cm^(-2) at 1.4 V in the CO_(2)electrolysis mode(or 1.03 A cm^(-2)at 1.3 V for H_(2)O electrolysis)at 800℃while maintaining excellent durability for over 100 h.
基金the support from Grant No.2022VBA0023 funded by the Chinese Academy of Sciences President's International Fellowship Initiative.
文摘Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.
基金Project supported by LingChuang Research Project of China National Nuclear Corporationthe National Natural Science Foundation of China(Grant No.12027812)。
文摘Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied and discussed.In this paper,the corresponding imaging fringe formula of the three-phase grating interferometer is provided.At the same time,the similarities and differences between the three-phase grating interferometer and the dual-phase grating interferometer are investigated and verified,and that the three-phase grating interferometer can produce large-period moiréfringes without using the analyzing grating is demonstrated experimentally.Finally,a simple method of designing three-phase grating and multi-grating imaging systems from geometric optics based on the thin-lens theory of gratings is presented.These theoretical formulas and experimental results provide optimization tools for designing three-phase grating interferometer systems.
基金supported by the National Natural Science Foundation of China (52173273)Fundamental Research Funds for the Central Universities (2022CX11013)+2 种基金Shanxi Province Science Foundation for Youths (No.202203021212391)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2022L253)Institute Foundation Project of China Academy of Railway Sciences Corporation Limited Metals and Chemistry Research Institute (No.2023SJ02)。
文摘The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00213920,NRF-2021R1A4A1031761).
文摘Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.
基金National Natural Science Foundation of China (62275267, 62335018, 12127805, 62105359)National Key Research and Development Program of China (2021YFF0700303, 2022YFE0100700)Youth Innovation Promotion Association, CAS (2021401)
文摘Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.
基金supported by the Guangdong Natural Science Fund General Program (2023A1515011289)Singapore Ministry of Health's National Medical Research Council under its Open Fund Individual Research Grant (MOH-OFIRG19may-0009)+2 种基金Ministry of Education Singapore under its Academic Research Fund Tier 1 (RG35/22)Academic Research Funding Tier 2 (MOE-T2EP30120-0001)China-Singapore International Joint Research Institute (203-A022001).
文摘Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods.Unfortu-nately,its application in optical coherence tomography(OCT)is often hindered by sensitivity to noise,which leads to ad-ditive ringing artifacts.These artifacts considerably degrade the quality of deconvolved images,thereby limiting its effect-iveness in OCT imaging.In this study,we propose a framework that integrates numerical random phase masks into the deconvolution process,effectively eliminating these artifacts and enhancing image clarity.The optimized joint operation of an iterative Richardson-Lucy deconvolution and numerical synthesis of random phase masks(RPM),termed as De-conv-RPM,enables a 2.5-fold reduction in full width at half-maximum(FWHM).We demonstrate that the Deconv-RPM method significantly enhances image clarity,allowing for the discernment of previously unresolved cellular-level details in nonkeratinized epithelial cells ex vivo and moving blood cells in vivo.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金supported by the National Natural Science Foundation of China (Grant No.12072331)the Science Challenge Project (Grant No.TZ2018001)+2 种基金the Japan Society for the Promotion of Science (Grant Nos.17H04820 and 21H01677)the Foundation of the United Laboratory of High-Pressure Physics and Earthquake Scienceperformed under the approval of the Photon Factory Program Advisory Committee (Proposal Nos.2016S2-006 and 2020G680)。
文摘A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.
基金Project supported by the Fund from the Ministry of Science and Technology(MOST)of China(Grant No.2018YFE0202700)the National Natural Science Foundation of China(Grant Nos.11974422 and 12104504)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.22XNKJ30)。
文摘Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.
基金support by the financial support of the National Nature Science Foundation of China(No.52274001,No.52074018)China Petrochemical Corporation(No.p21069)The financial support of Fundamental Research Funds for the Central Universities(buctrc202017)。
文摘The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.
基金supported by the National Natural Science Foundation of China(Grant Nos.52322212,52072400,52025025,and 52250402)。
文摘Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films.
基金supported by the National Natural Science Foundation of China(Grant No.62071248)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ24A040004)+1 种基金Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)China Postdoctoral Science Foundation(Grant No.2022M721693).
文摘Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it is generally believed that the phase of the hopping term does not affect the localization properties of the system,so the calculation of the phase is often ignored in the study of localization.Here,we introduce a quasiperiodic model and demonstrate that the phase change of the hopping term can significantly alter the localization properties of the system through detailed numerical simulations,such as the inverse participation ratio and multifractal analysis.This phase-induced localization transition provides valuable information for the study of localization physics.
基金National Key Research and Development Program of China(Grant No.2022YFA1402704)National Natural Science Foundation of China(Grant No.12247101).
文摘Phase transitions are both thermodynamically and quantum-mechanically ubiquitous in nature and laboratories,and their understanding remains one of the most active issues in modern physics and related disciplines.The Landau theory provides a general framework to describe phenomenologically phase transitions by introducing order parameters and associated symmetry breaking.This theory is also taken as a starting point to explore critical phenomena in connection with phase transitions in the renormalization group,which provides a complete theoretical description of behaviors close to critical points.In this context,the microscopic mechanism of phase transitions remains unclear.In this study,we explore the microscopic mechanism of the superradiant phase transition in the quantum Rabi model(QRM).First,we perform a diagonalization operation in an operator space to obtain three fundamental patterns,denoted asλ_(1),λ_(2),and λ_(3),involved in the QRM.Then,we explicitly analyze the energy evolutions of these patterns with increasing coupling strength.The observed characteristic behaviors reveal the microscopic mechanism of the superradiant phase transition as a consequence of competition between patterns due to different phase relations.In other words,with increasing coupling strength,the patternλ1 drives the phase transition,the patternλ_(2) exhibits a similar response speed but less energy compensation than the patternλ1,and the pattern λ_(3) exhibits a slow response speed but plays a key role in the balance between it and the pattern λ_(1),which stabilizes the new phase.This type of dissecting mechanism explains why and how the superradiant phase transition occurs in the QRM and paves the way for exploring the microscopic mechanism of phase transitions that occur frequently in nature.
基金supported by the Russian Science Foundation(grant No.22-19-00037),https://rscf.ru/project/22-19-00037/.
文摘The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)and InOOH are formed,which are the precursors of stable cubic(c-In_(2)O_(3))and metastable rhombohedral(rh-In_(2)O_(3))phases,respectively.A transition from c-In_(2)O_(3)to rh-In_(2)O_(3)is observed with the addition of CeO_(2).The introduction of cerium into rh-In_(2)O_(3)results in a decrease in the sensor response to hydrogen,while it increases in composites based on c-In_(2)O_(3).The data on the sensor activity of the composites correlate with XPS results in which CeO_(2)causes a decrease in the concentrations of chemisorbed oxygen and oxygen vacancies in rh-In_(2)O_(3).The reverse situation is observed in composites based on c-In_(2)O_(3).Compared to In_(2)O_(3)and CeO_(2)–In_(2)O_(3)obtained by other methods,the synthesized composites demonstrate maximum response to H_(2)at low temperatures by 70–100℃,and have short response time(0.2–0.5 s),short recovery time(6–7 s),and long-term stability.A model is proposed for the dependence of sensitivity on the direction of electron transfer between In_(2)O_(3)and CeO_(2).