A kind of dispatch method for power system eigenvalue control is proposed-in this paper. With the help of this method, not only the low-frequency oscillation of a power system can be prevented and controlled, but also...A kind of dispatch method for power system eigenvalue control is proposed-in this paper. With the help of this method, not only the low-frequency oscillation of a power system can be prevented and controlled, but also the probabilistic power oscillatoin on the interconnection lines of an interconnected power system can be reduced. The proposed method has the advantages of high calculation speed and good convergency. Therefore, the method has much prospect of on-line application.展开更多
This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the sing...This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the singularity of the traditional fast terminal sliding manifold, a novel fast terminal sliding manifold is given. And then, based on the adaptive control method, a continuous robust coordinated controller is designed to compensate external disturbances and to alleviate the chattering phenomenon. The theoretical analysis shows that the coordinated controller can guarantee the finite-time stability of the overall closed-loop system through local information exchange, and numerical simulations also demonstrate its effectiveness.展开更多
On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UP...On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.展开更多
A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyr...A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations.展开更多
抽水蓄能具有突出的能量密度和功率密度优势。借助其快速响应和灵活调节能力,能够有效平抑新能源出力随机波动,提高系统频率稳定性。针对抽水蓄能如何融入电力系统频率稳定控制问题,提出一种基于转速保护的变速抽蓄自适应综合惯量控制策...抽水蓄能具有突出的能量密度和功率密度优势。借助其快速响应和灵活调节能力,能够有效平抑新能源出力随机波动,提高系统频率稳定性。针对抽水蓄能如何融入电力系统频率稳定控制问题,提出一种基于转速保护的变速抽蓄自适应综合惯量控制策略,并采用优化思想对控制参数进行求解。在考虑短期频率变化率(rate of change of frequency,RoCoF)预测及变速抽蓄自适应综合惯量控制响应系统频率变化的基础上,对传统电力系统低频切泵策略进行改进,提出定速抽蓄自适应低频切泵控制策略。通过不同场景下的仿真验证,结果表明,将变速抽蓄自适应综合惯量调频控制策略与改进低频切泵策略相结合能够更好地适应高比例新能源电力系统,提升系统的频率调节性能。展开更多
文摘A kind of dispatch method for power system eigenvalue control is proposed-in this paper. With the help of this method, not only the low-frequency oscillation of a power system can be prevented and controlled, but also the probabilistic power oscillatoin on the interconnection lines of an interconnected power system can be reduced. The proposed method has the advantages of high calculation speed and good convergency. Therefore, the method has much prospect of on-line application.
基金supported by the National Natural Science Foundation of China(61174037)the National High Technology Research and Development Program of China(863 Program)(2012AA120602CAST20120602)
文摘This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the singularity of the traditional fast terminal sliding manifold, a novel fast terminal sliding manifold is given. And then, based on the adaptive control method, a continuous robust coordinated controller is designed to compensate external disturbances and to alleviate the chattering phenomenon. The theoretical analysis shows that the coordinated controller can guarantee the finite-time stability of the overall closed-loop system through local information exchange, and numerical simulations also demonstrate its effectiveness.
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
文摘On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.
基金Project(UKM-DLP-2011-059) supported by the National University of Malaysia
文摘A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations.
文摘抽水蓄能具有突出的能量密度和功率密度优势。借助其快速响应和灵活调节能力,能够有效平抑新能源出力随机波动,提高系统频率稳定性。针对抽水蓄能如何融入电力系统频率稳定控制问题,提出一种基于转速保护的变速抽蓄自适应综合惯量控制策略,并采用优化思想对控制参数进行求解。在考虑短期频率变化率(rate of change of frequency,RoCoF)预测及变速抽蓄自适应综合惯量控制响应系统频率变化的基础上,对传统电力系统低频切泵策略进行改进,提出定速抽蓄自适应低频切泵控制策略。通过不同场景下的仿真验证,结果表明,将变速抽蓄自适应综合惯量调频控制策略与改进低频切泵策略相结合能够更好地适应高比例新能源电力系统,提升系统的频率调节性能。