Capacitor-based pulsed power supply(PPS)is widely used in fields related to electromagnetic launch,plasma,and materials'synthesis,modification and processing.As industrial applications place higher requirements on...Capacitor-based pulsed power supply(PPS)is widely used in fields related to electromagnetic launch,plasma,and materials'synthesis,modification and processing.As industrial applications place higher requirements on compact and portable pulsed power supplies,the National Key Laboratory of Transient Physics(NKLTP)recently developed a pulsed power supply consisting of a set of compact pulse-forming units(PFU),each with a capacitor energy storage of 220 kJ.This integrated PPS comes with a complete system configuration,a miniature compact structure,a high rate of repetition,and high power,with energy storage density exceeding 1.2 MJ/m^(3).This paper describes the device-level design of the unit,the system layout,the control system,the thermal management system,and the experimental results of the pulsed power supply.The experimental results verified the good reliability of the PPS at high repetition rates with each unit module delivering an output current of more than 100 kA.Additionally,flexible current pulse shapes can be formed by setting the charging voltage and the trigger sequence of the PFUs.The pulse forming network(PFN)developed from these PFUs was successfully applied to electromagnetic launch.展开更多
With the increasing of electric vehicles(EVs)penetration in power grids,the charging of EVs will have significant impacts on power system planning and operation.It is necessary to note that the majority of EVs are not...With the increasing of electric vehicles(EVs)penetration in power grids,the charging of EVs will have significant impacts on power system planning and operation.It is necessary to note that the majority of EVs are not in use in most ofthe time in a day.Therefore,the onboard batteries can be utilized as energy storage devices.This article reviews and discusses the current related research in the following areas.展开更多
This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing ...This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing are first discussed. The causes of the transformer magnetic biasing are then analyzed in detail. The proposed method is based on a high-pass filter inserted in the forward path and the feedforward control. Without testing magnetic biasing of transformer, this method can eliminate magnetic biasing of transformer completely in real-time waveform feedback control systems though the zero error of the Hall effect sensors varies with time and temperature. The method has already been employed in a 90KVA AC power supply. It is shown that it offers improved performance over existing ones. In this method, no sensors are used such that the zero error of the Hall effect sensors has not any influence on the system. It is simple to design and implement. Furthermore, the method is suitable for various power applications.展开更多
Power system security and stability is very important to national economy and people's life,so it has been paid great attention by governments and power utilities.In order to avoid huge economic losses caused by l...Power system security and stability is very important to national economy and people's life,so it has been paid great attention by governments and power utilities.In order to avoid huge economic losses caused by large-scale blackouts,State Grid Corporation of China(SGCC)have invested sufficient human and financial resources to carry out related researches,and remarkable achievements have been achieved.However,large grid stability problem is very complex,it is still difficult to completely avoid the blackouts.展开更多
基金financial support from the National Key Laboratory of Transient Physics,Nanjing University of Science and Technology(Grant No.6142604230101)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant Nos.KYCX20_0321 and KYCX20_0322).
文摘Capacitor-based pulsed power supply(PPS)is widely used in fields related to electromagnetic launch,plasma,and materials'synthesis,modification and processing.As industrial applications place higher requirements on compact and portable pulsed power supplies,the National Key Laboratory of Transient Physics(NKLTP)recently developed a pulsed power supply consisting of a set of compact pulse-forming units(PFU),each with a capacitor energy storage of 220 kJ.This integrated PPS comes with a complete system configuration,a miniature compact structure,a high rate of repetition,and high power,with energy storage density exceeding 1.2 MJ/m^(3).This paper describes the device-level design of the unit,the system layout,the control system,the thermal management system,and the experimental results of the pulsed power supply.The experimental results verified the good reliability of the PPS at high repetition rates with each unit module delivering an output current of more than 100 kA.Additionally,flexible current pulse shapes can be formed by setting the charging voltage and the trigger sequence of the PFUs.The pulse forming network(PFN)developed from these PFUs was successfully applied to electromagnetic launch.
文摘With the increasing of electric vehicles(EVs)penetration in power grids,the charging of EVs will have significant impacts on power system planning and operation.It is necessary to note that the majority of EVs are not in use in most ofthe time in a day.Therefore,the onboard batteries can be utilized as energy storage devices.This article reviews and discusses the current related research in the following areas.
文摘This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing are first discussed. The causes of the transformer magnetic biasing are then analyzed in detail. The proposed method is based on a high-pass filter inserted in the forward path and the feedforward control. Without testing magnetic biasing of transformer, this method can eliminate magnetic biasing of transformer completely in real-time waveform feedback control systems though the zero error of the Hall effect sensors varies with time and temperature. The method has already been employed in a 90KVA AC power supply. It is shown that it offers improved performance over existing ones. In this method, no sensors are used such that the zero error of the Hall effect sensors has not any influence on the system. It is simple to design and implement. Furthermore, the method is suitable for various power applications.
文摘Power system security and stability is very important to national economy and people's life,so it has been paid great attention by governments and power utilities.In order to avoid huge economic losses caused by large-scale blackouts,State Grid Corporation of China(SGCC)have invested sufficient human and financial resources to carry out related researches,and remarkable achievements have been achieved.However,large grid stability problem is very complex,it is still difficult to completely avoid the blackouts.