Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction...Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.展开更多
In cooperative localization with sparse communication networks, an agent maybe only receives part of locating messages from the others. It is difficult for the receiver to utilize the part instead of global knowledge....In cooperative localization with sparse communication networks, an agent maybe only receives part of locating messages from the others. It is difficult for the receiver to utilize the part instead of global knowledge. Under the extended Kalman filtering, the utilization of the locating message is maximized by two aspects: the locating message generating and multi-locating messages fusing. For the former, the covariance upper-bound technique, by introducing amplification coefficients, is employed to remove the dependency of locating messages on the global knowledge. For the latter, an optimization model is setup; the covariance matrix determinant of the receiver's state estimate, expressed as a function of the amplification coefficients, is selected as the optimization criterion, under linear constraints on the amplification coefficient characteristics and the communication connectivity. Using the optimization solution, the local optimal state of the receiver agent is obtained by the weighting fusion. Simulation with seven agents is shown to evaluate the effectiveness of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(60974146)the Natural Science and Engineering Research Council of Canada(NSERC)
文摘Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61273357)
文摘In cooperative localization with sparse communication networks, an agent maybe only receives part of locating messages from the others. It is difficult for the receiver to utilize the part instead of global knowledge. Under the extended Kalman filtering, the utilization of the locating message is maximized by two aspects: the locating message generating and multi-locating messages fusing. For the former, the covariance upper-bound technique, by introducing amplification coefficients, is employed to remove the dependency of locating messages on the global knowledge. For the latter, an optimization model is setup; the covariance matrix determinant of the receiver's state estimate, expressed as a function of the amplification coefficients, is selected as the optimization criterion, under linear constraints on the amplification coefficient characteristics and the communication connectivity. Using the optimization solution, the local optimal state of the receiver agent is obtained by the weighting fusion. Simulation with seven agents is shown to evaluate the effectiveness of the proposed algorithm.