The accurate detection of cooperative targets plays a key and foundational role in unmanned aerial vehicle (UAV) landing autonomously. The standard method based on fixed threshold is too susceptible to both illuminati...The accurate detection of cooperative targets plays a key and foundational role in unmanned aerial vehicle (UAV) landing autonomously. The standard method based on fixed threshold is too susceptible to both illumination variations and interference. To overcome issues above, a robust detection algorithm with triple constraints for cooperative targets based on spectral residual (TCSR) is proposed. Firstly, by designing an asymmetric cooperative target, which comprises red background, green H and triangle target, the captured original image is converted into a Lab color space, whose saliency map is yielded by constructing the spectral residual. Then, the triple constraints are developed according to the prior knowledge of the cooperative target. Finally, the salient region in saliency map is considered as the cooperative target, and it meets the triple constraints. Experimental results in complex environments show that the proposed TCSR outperforms the standard methods in higher detection accuracy and lower false alarm rate.展开更多
基金supported by the National Natural Science Foundation of China(61135001)the Scientific Research Program of Shaanxi Provincial Department of Education(16JK1499)+2 种基金the Doctoral Fund of Xi’an University of Science and Technology(2015QDJ007)the Cultivation of Xi’an University of Science and Technology(2014015)the Ministry of Education Key Laboratory of Information Fusion Technology(LIFT2015-G-1)
文摘The accurate detection of cooperative targets plays a key and foundational role in unmanned aerial vehicle (UAV) landing autonomously. The standard method based on fixed threshold is too susceptible to both illumination variations and interference. To overcome issues above, a robust detection algorithm with triple constraints for cooperative targets based on spectral residual (TCSR) is proposed. Firstly, by designing an asymmetric cooperative target, which comprises red background, green H and triangle target, the captured original image is converted into a Lab color space, whose saliency map is yielded by constructing the spectral residual. Then, the triple constraints are developed according to the prior knowledge of the cooperative target. Finally, the salient region in saliency map is considered as the cooperative target, and it meets the triple constraints. Experimental results in complex environments show that the proposed TCSR outperforms the standard methods in higher detection accuracy and lower false alarm rate.