期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
1
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu Weitao Yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
在线阅读 下载PDF
An efficient data-driven global sensitivity analysis method of shale gas production through convolutional neural network
2
作者 Liang Xue Shuai Xu +4 位作者 Jie Nie Ji Qin Jiang-Xia Han Yue-Tian Liu Qin-Zhuo Liao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2475-2484,共10页
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively... The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages. 展开更多
关键词 Shale gas Global sensitivity convolutional neural network DATA-DRIVEN
在线阅读 下载PDF
High-resolution reconstruction of the ablative RT instability flowfield via convolutional neural networks
3
作者 Xia Zhiyang Kuang Yuanyuan +1 位作者 Lu Yan Yang Ming 《强激光与粒子束》 CAS CSCD 北大核心 2024年第12期42-49,共8页
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl... High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed. 展开更多
关键词 convolutional neural networks ablative Rayleigh-Taylor instability high-resolutionreconstruction multi-time-path pooling
在线阅读 下载PDF
Analysis of learnability of a novel hybrid quantum-classical convolutional neural network in image classification
4
作者 程涛 赵润盛 +2 位作者 王爽 王睿 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期275-283,共9页
We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in cl... We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in classical convolutional neural networks,forming a new quantum convolutional layer to achieve unitary transformation of quantum states,enabling the model to more accurately extract hidden information from images.At the same time,we combine the classical fully connected layer with PQCs to form a new hybrid quantum-classical fully connected layer to further improve the accuracy of classification.Finally,we use the MNIST dataset to test the potential of the HQCCNN.The results indicate that the HQCCNN has good performance in solving classification problems.In binary classification tasks,the classification accuracy of numbers 5 and 7 is as high as 99.71%.In multivariate classification,the accuracy rate also reaches 98.51%.Finally,we compare the performance of the HQCCNN with other models and find that the HQCCNN has better classification performance and convergence speed. 展开更多
关键词 parameterized quantum circuits quantum machine learning hybrid quantum-classical convolutional neural network
在线阅读 下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction
5
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking Product yield Data-driven modeling Multiscale prediction Data decomposition Convolution neural network
在线阅读 下载PDF
Face Image Recognition Based on Convolutional Neural Network 被引量:13
6
作者 Guangxin Lou Hongzhen Shi 《China Communications》 SCIE CSCD 2020年第2期117-124,共8页
With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communicati... With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database. 展开更多
关键词 convolutional neural network face image recognition machine learning artificial intelligence multilayer information fusion
在线阅读 下载PDF
Fast recognition using convolutional neural network for the coal particle density range based on images captured under multiple light sources 被引量:6
7
作者 Feiyan Bai Minqiang Fan +1 位作者 Hongli Yang Lianping Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第6期1053-1061,共9页
A method based on multiple images captured under different light sources at different incident angles was developed to recognize the coal density range in this study.The innovation is that two new images were construc... A method based on multiple images captured under different light sources at different incident angles was developed to recognize the coal density range in this study.The innovation is that two new images were constructed based on images captured under four single light sources.Reconstruction image 1 was constructed by fusing greyscale versions of the original images into one image,and Reconstruction image2 was constructed based on the differences between the images captured under the different light sources.Subsequently,the four original images and two reconstructed images were input into the convolutional neural network AlexNet to recognize the density range in three cases:-1.5(clean coal) and+1.5 g/cm^(3)(non-clean coal);-1.8(non-gangue) and+1.8 g/cm^(3)(gangue);-1.5(clean coal),1.5-1.8(middlings),and+1.8 g/cm^(3)(gangue).The results show the following:(1) The reconstructed images,especially Reconstruction image 2,can effectively improve the recognition accuracy for the coal density range compared with images captured under single light source.(2) The recognition accuracies for gangue and non-gangue,clean coal and non-clean coal,and clean coal,middlings,and gangue reached88.44%,86.72% and 77.08%,respectively.(3) The recognition accuracy increases as the density moves further away from the boundary density. 展开更多
关键词 COAL Density range Image Multiple light sources convolutional neural network
在线阅读 下载PDF
All-optical computing based on convolutional neural networks 被引量:10
8
作者 Kun Liao Ye Chen +7 位作者 Zhongcheng Yu Xiaoyong Hu Xingyuan Wang Cuicui Lu Hongtao Lin Qingyang Du Juejun Hu Qihuang Gong 《Opto-Electronic Advances》 SCIE 2021年第11期46-54,共9页
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi... The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing. 展开更多
关键词 convolutional neural networks all-optical computing mathematical operations cascaded silicon waveguides
在线阅读 下载PDF
Study on analytical noise propagation in convolutional neural network methods used in computed tomography imaging 被引量:7
9
作者 Xiao-Yue Guo Li Zhang Yu-Xiang Xing 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第6期114-127,共14页
Neural network methods have recently emerged as a hot topic in computed tomography(CT) imaging owing to their powerful fitting ability;however, their potential applications still need to be carefully studied because t... Neural network methods have recently emerged as a hot topic in computed tomography(CT) imaging owing to their powerful fitting ability;however, their potential applications still need to be carefully studied because their results are often difficult to interpret and are ambiguous in generalizability. Thus, quality assessments of the results obtained from a neural network are necessary to evaluate the neural network. Assessing the image quality of neural networks using traditional objective measurements is not appropriate because neural networks are nonstationary and nonlinear. In contrast, subjective assessments are trustworthy, although they are time-and energy-consuming for radiologists. Model observers that mimic subjective assessment require the mean and covariance of images, which are calculated from numerous image samples;however, this has not yet been applied to the evaluation of neural networks. In this study, we propose an analytical method for noise propagation from a single projection to efficiently evaluate convolutional neural networks(CNNs) in the CT imaging field. We propagate noise through nonlinear layers in a CNN using the Taylor expansion. Nesting of the linear and nonlinear layer noise propagation constitutes the covariance estimation of the CNN. A commonly used U-net structure is adopted for validation. The results reveal that the covariance estimation obtained from the proposed analytical method agrees well with that obtained from the image samples for different phantoms, noise levels, and activation functions, demonstrating that propagating noise from only a single projection is feasible for CNN methods in CT reconstruction. In addition, we use covariance estimation to provide three measurements for the qualitative and quantitative performance evaluation of U-net. The results indicate that the network cannot be applied to projections with high noise levels and possesses limitations in terms of efficiency for processing low-noise projections. U-net is more effective in improving the image quality of smooth regions compared with that of the edge. LeakyReLU outperforms Swish in terms of noise reduction. 展开更多
关键词 Noise propagation convolutional neural network Image quality assessment
在线阅读 下载PDF
Forest fire smoke recognition based on convolutional neural network 被引量:3
10
作者 Xiaofang Sun Liping Sun Yinglai Huang 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第5期1921-1927,共7页
Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neu... Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neural network(CNN)to achieve fast analysis.The improved CNN can be used to liberate manpower.The network does not require complicated manual feature extraction to identify forest fire smoke.First,to alleviate the computational pressure and speed up the discrimination efficiency,kernel principal component analysis was performed on the experimental data set.To improve the robustness of the CNN and to avoid overfitting,optimization strategies were applied in multi-convolution kernels and batch normalization to improve loss functions.The experimental analysis shows that the CNN proposed in this study can learn the feature information automatically for smoke images in the early stages of fire automatically with a high recognition rate.As a result,the improved CNN enriches the theory of smoke discrimination in the early stages of a forest fire. 展开更多
关键词 Forest fire smoke convolutional neural network Image classification Kernel principal component analysis
在线阅读 下载PDF
Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization 被引量:2
11
作者 Siyuan Xu Xiaoxian Zhu +7 位作者 Ji Wang Yuanfeng Li Yitan Gao Kun Zhao Jiangfeng Zhu Dacheng Zhang Yunlin Chen Zhiyi Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期586-590,共5页
A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically ge... A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically generated TGFROG traces to complete supervised trainings of the convolutional neural networks,then use similarly generated traces not included in the training dataset to test how well the networks are trained.Accurate retrieval of such traces by the neural network is realized.In our case,we find that networks with exponential linear unit(ELU) activation function perform better than those with leaky rectified linear unit(LRELU) and scaled exponential linear unit(SELU).Finally,the issues that need to be addressed for the retrieval of experimental data by this method are discussed. 展开更多
关键词 transient-grating frequency-resolved optical gating convolutional neural network activation function phase retrieval algorithm
在线阅读 下载PDF
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
12
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(CNN) cloud RAN deep Q-network(DQN)
在线阅读 下载PDF
Automatic well test interpretation based on convolutional neural network for a radial composite reservoir 被引量:5
13
作者 LI Daolun LIU Xuliang +2 位作者 ZHA Wenshu YANG Jinghai LU Detang 《Petroleum Exploration and Development》 2020年第3期623-631,共9页
An automatic well test interpretation method for radial composite reservoirs based on convolutional neural network(CNN) is proposed, and its effectiveness and accuracy are verified by actual field data. In this paper,... An automatic well test interpretation method for radial composite reservoirs based on convolutional neural network(CNN) is proposed, and its effectiveness and accuracy are verified by actual field data. In this paper, based on the data transformed by logarithm function and the loss function of mean square error(MSE), the optimal CNN is obtained by reducing the loss function to optimize the network with "dropout" method to avoid over fitting. The trained optimal network can be directly used to interpret the buildup or drawdown pressure data of the well in the radial composite reservoir, that is, the log-log plot of the given measured pressure variation and its derivative data are input into the network, the outputs are corresponding reservoir parameters(mobility ratio, storativity ratio, dimensionless composite radius, and dimensionless group characterizing well storage and skin effects), which realizes the automatic initial fitting of well test interpretation parameters. The method is verified with field measured data of Daqing Oilfield. The research shows that the method has high interpretation accuracy, and it is superior to the analytical method and the least square method. 展开更多
关键词 radial composite reservoir well testing interpretation convolutional neural network automatic interpretation artificial intelligence
在线阅读 下载PDF
A non-invasive diagnostic method of cavity detuning based on a convolutional neural network 被引量:2
14
作者 Liu-Yuan Zhou Hao Zha +4 位作者 Jia-Ru Shi Jia-Qi Qiu Chuan-Jing Wang Yun-Sheng Han Huai-Bi Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第7期25-35,共11页
As modern accelerator technologies advance toward more compact sizes,conventional invasive diagnostic methods of cavity detuning introduce negligible interference in measurements and run the risk of harming structural... As modern accelerator technologies advance toward more compact sizes,conventional invasive diagnostic methods of cavity detuning introduce negligible interference in measurements and run the risk of harming structural surfaces.To overcome these difficulties,this study developed a non-invasive diagnostic method using knowledge of scattering parameters with a convolutional neural network and the interior point method.Meticulous construction and training of the neural network led to remarkable results on three typical acceleration structures:a 13-cell S-band standing-wave linac,a 12-cell X-band traveling-wave linac,and a 3-cell X-band RF gun.The trained networks significantly reduced the burden of the tuning process,freed researchers from tedious tuning tasks,and provided a new perspective for the tuning of side-coupling,semi-enclosed,and total-enclosed structures. 展开更多
关键词 Cavity detuning convolutional neural network Equivalent circuit
在线阅读 下载PDF
Decomposition of fissile isotope antineutrino spectra using convolutional neural network 被引量:2
15
作者 Yu-Da Zeng Jun Wang +4 位作者 Rong Zhao Feng-Peng An Xiang Xiao Yuenkeung Hor Wei Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第5期183-191,共9页
Recent reactor antineutrino experiments have observed that the neutrino spectrum changes with the reactor core evolution and that the individual fissile isotope antineutrino spectra can be decomposed from the evolving... Recent reactor antineutrino experiments have observed that the neutrino spectrum changes with the reactor core evolution and that the individual fissile isotope antineutrino spectra can be decomposed from the evolving data,providing valuable information for the reactor model and data inconsistent problems.We propose a machine learning method by building a convolutional neural network based on a virtual experiment with a typical short-baseline reactor antineutrino experiment configuration:by utilizing the reactor evolution information,the major fissile isotope spectra are correctly extracted,and the uncertainties are evaluated using the Monte Carlo method.Validation tests show that the method is unbiased and introduces tiny extra uncertainties. 展开更多
关键词 Reactor antineutrino Isotope antineutrino spectrum decomposition convolutional neural network
在线阅读 下载PDF
Convolutional Neural Network Based on Spatial Pyramid for Image Classification 被引量:2
16
作者 Gaihua Wang Meng Lu +2 位作者 Tao Li Guoliang Yuan Wenzhou Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期630-636,共7页
A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an orig... A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an original image,and then different layers of grids are utilized to extract feature maps from different convolutional layers.Inspired by the spatial pyramid,the new network contains two parts,one of which is just like a standard convolutional neural network,composing of alternating convolutions and subsampling layers.But those convolution layers would be averagely pooled by the grid way to obtain feature maps,and then concatenated into a feature vector individually.Finally,those vectors are sequentially concatenated into a total feature vector as the last feature to the fully connection layer.This generated feature vector derives benefits from the classic and previous convolution layer,while the size of the grid adjusting the weight of the feature maps improves the recognition efficiency of the network.Experimental results demonstrate that this model improves the accuracy and applicability compared with the traditional model. 展开更多
关键词 convolutional neural network multiscale feature extraction image classification
在线阅读 下载PDF
Quantitative analysis modeling for the Chem Cam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network 被引量:1
17
作者 Xueqiang CAO Li ZHANG +3 位作者 Zhongchen WU Zongcheng LING Jialun LI Kaichen GUO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第11期81-90,共10页
Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance f... Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance for the Mars exploration in the near future.In this study,we explored the quantitative analysis of LIBS for the one-dimensional Chem Cam(an instrument containing a LIBS spectrometer and a Remote Micro-Imager)spectral data whose spectra are produced by the Chem Cam team using LIBS under the Mars-like atmospheric conditions.We constructed a convolutional neural network(CNN)regression model with unified parameters for all oxides,which is efficient and concise.CNN that has the excellent capability of feature extraction can effectively overcome the chemical matrix effects that impede the prediction accuracy of regression models.Firstly,we explored the effects of four activation functions on the performance of the CNN model.The results show that the CNN model with the hyperbolic tangent(tanh)function outperforms the CNN models with the other activation functions(the rectified linear unit function,the linear function and the Sigmoid function).Secondly,we compared the performance among the CNN models using different optimization methods.The CNN model with the stochastic gradient descent optimization and the initial learning rate?=?0.0005 achieves satisfactory performance compared to the other CNN models.Finally,we compared the performance of the CNN model,the model based on support vector regression(SVR)and the model based on partial least square regression(PLSR).The results exhibit the CNN model is superior to the SVR model and the PLSR model for all oxides.Based on the above analysis,we conclude the CNN regression model can effectively improve the prediction accuracy of LIBS. 展开更多
关键词 laser-induced breakdown spectroscopy convolutional neural network activation function optimization method quantitative analysis
在线阅读 下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
18
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) convolutional neural network(CNN)
在线阅读 下载PDF
Counting of alpha particle tracks on imaging plate based on a convolutional neural network 被引量:1
19
作者 Feng-Di Qin Han-Yu Luo +5 位作者 Zheng-Zhong He Ke-Jun Lu Chuan-Gao Wang Meng-Meng Wu Zhong-Kai Fan Jian Shan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期52-63,共12页
Imaging plates are widely used to detect alpha particles to track information,and the number of alpha particle tracks is affected by the overlapping and fading effects of the track information.In this study,an experim... Imaging plates are widely used to detect alpha particles to track information,and the number of alpha particle tracks is affected by the overlapping and fading effects of the track information.In this study,an experiment and a simulation were used to calibrate the efficiency parameter of an imaging plate,which was used to calculate the grayscale.Images were created by using grayscale,which trained the convolutional neural network to count the alpha tracks.The results demonstrated that the trained convolutional neural network can evaluate the alpha track counts based on the source and background images with a wider linear range,which was unaffected by the overlapping effect.The alpha track counts were unaffected by the fading effect within 60 min,where the calibrated formula for the fading effect was analyzed for 132.7 min.The detection efficiency of the trained convolutional neural network for inhomogeneous ^(241)Am sources(2π emission)was 0.6050±0.0399,whereas the efficiency curve of the photo-stimulated luminescence method was lower than that of the trained convolutional neural network. 展开更多
关键词 Imaging plate convolutional neural network Alpha tracks counting
在线阅读 下载PDF
Determination of quantum toric error correction code threshold using convolutional neural network decoders 被引量:1
20
作者 Hao-Wen Wang Yun-Jia Xue +2 位作者 Yu-Lin Ma Nan Hua Hong-Yang Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期136-142,共7页
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err... Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise. 展开更多
关键词 quantum error correction toric code convolutional neural network(CNN)decoder
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部