期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
面向VVC的QP自适应环路滤波器
1
作者 刘鹏宇 金鹏程 《北京工业大学学报》 北大核心 2025年第10期1171-1178,共8页
现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路... 现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路滤波器。首先,设计一个轻量级分类网络,按照滤波难易程度将编码树单元(coding tree unit,CTU)划分为难、中、易3类;然后,构建3个融合了特征信息增强融合模块的基于CNN的滤波网络,以满足不同QP下的3类CTU滤波需求。将所提出的环路滤波器集成到多功能视频编码(versatile video coding,VVC)标准H.266/VVC的测试软件VTM 6.0中,替换原有的去块效应滤波器(deblocking filter,DBF)、样本自适应偏移(sample adaptive offset,SAO)滤波器和自适应环路滤波器。实验结果表明,该方法平均降低了3.14%的比特率差值(Bjøntegaard delta bit rate,BD-BR),与其他基于CNN的环路滤波器相比,显著提高了压缩效率,并减少了压缩伪影。 展开更多
关键词 视频编码 多功能视频编码(versatile video coding VVC)标准 环路滤波 卷积神经网络(convolutional neural network CNN) 深度学习 图像去噪
在线阅读 下载PDF
面向高分辨率图像传输的CNN网络编码方案研究
2
作者 刘娜 杨颜博 +2 位作者 张嘉伟 李宝山 马建峰 《西安电子科技大学学报》 北大核心 2025年第2期225-238,共14页
网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码... 网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码方案对高维度空间信息的捕捉能力不足,带来较大的通信及计算开销。为此,文中提出采用二维卷积神经网络(CNN)对各网络节点的编解码器进行参数化设计的联合源的深度学习网络编码方案,通过CNN捕捉深层空间结构信息并降低网络节点的计算复杂度。在信源节点,通过卷积层运算实现对传输数据的降维处理,提升数据的传输速率;在中间节点,接收来自两个信源的数据并通过CNN编码压缩至单个信道传输;在信宿节点,对接收到的数据利用CNN进行升维解码而恢复出原始图像。实验表明,在不同信道带宽占用比和信道噪声水平下,该方案在峰值信噪比和结构相似度上展现出优良的解码性能。 展开更多
关键词 网络编码 深度学习 卷积神经网络 高分辨率图像 图像通信
在线阅读 下载PDF
DeepCom-GCN:融入控制流结构信息的代码注释生成模型
3
作者 钟茂生 刘会珠 +1 位作者 匡江玲 严婷 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期27-36,共10页
代码注释生成是指给定一个代码片段,通过模型自动生成一段关于代码片段功能的概括性自然语言描述.不同于自然语言,程序语言具有复杂语法和强结构性.部分研究工作只利用了源代码的序列信息或抽象语法树信息,未能充分利用源代码的逻辑结... 代码注释生成是指给定一个代码片段,通过模型自动生成一段关于代码片段功能的概括性自然语言描述.不同于自然语言,程序语言具有复杂语法和强结构性.部分研究工作只利用了源代码的序列信息或抽象语法树信息,未能充分利用源代码的逻辑结构信息.针对这一问题,该文提出一种融入程序控制流结构信息的代码注释生成方法,将源代码序列和结构信息作为单独的输入进行处理,允许模型学习代码的语义和结构.在2个公开数据集上进行验证,实验结果表明:和其他基线方法相比,DeepCom-GCN在BLEU-4、METEOR和ROUGE-L指标上的性能分别提升了2.79%、1.67%和1.21%,验证了该方法的有效性. 展开更多
关键词 代码注释生成 抽象语法树 控制流图 图卷积神经网络 软件工程 程序理解 自然语言处理
在线阅读 下载PDF
一种基于混合量子卷积神经网络的恶意代码检测方法 被引量:1
4
作者 熊其冰 苗启广 +2 位作者 杨天 袁本政 费洋扬 《计算机科学》 北大核心 2025年第3期385-390,共6页
量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测... 量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测模型越来越复杂,参数量越来越大,迫切需要一种高效轻量型的检测模型。为此,设计了一种混合量子卷积神经网络模型,将量子计算融入经典卷积神经网络,以提高模型的计算效率。该模型包含量子卷积层、池化层和经典全连接层。量子卷积层采用低深度强纠缠轻量型的参数化量子线路实现,仅使用两类量子门:量子旋转门Ry和受控非门CNOT(controlled-NOT),并仅使用两量子比特实现卷积计算。池化层基于经典计算和量子计算实现了3种池化方法。在Google TensorFlow Quantum上进行了模拟实验。实验结果显示,所提模型在恶意代码公开数据集DataCon2020和Ember的分类性能(accuracy,F1-score)分别达到了(97.75%,97.71%)和(94.65%,94.78%),均有明显提升。 展开更多
关键词 量子计算 量子机器学习 混合量子卷积神经网络 恶意代码检测
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
5
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于CNN和自注意力神经网络的代码补全方法
6
作者 陈伟 何成万 +2 位作者 余秋惠 贺正源 罗蝶 《计算机工程与设计》 北大核心 2025年第10期2919-2926,共8页
由于基于抽象语法树的代码补全模型在提取代码序列细粒度的局部特征方面能力较差,并且难以应用于实际开发场景,提出一种基于卷积神经网络(convolutional neural network,CNN)和自注意力神经网络Transformer的代码补全方法。采用基于代... 由于基于抽象语法树的代码补全模型在提取代码序列细粒度的局部特征方面能力较差,并且难以应用于实际开发场景,提出一种基于卷积神经网络(convolutional neural network,CNN)和自注意力神经网络Transformer的代码补全方法。采用基于代码轻量级语法信息的预处理方法,并提出将CNN与Transformer网络以参数有效的方式结合,对代码序列的全局和局部依赖关系进行全面性建模。模型采用多任务学习机制(multi-task learning,MTL)共享代码token值和类型信息,提取代码序列中的语法和语义特征完成代码token级补全任务。实验结果表明,所提出的代码补全方法在ETH 150K Python数据集上准确率达到74.85%,显著优于基线方法。 展开更多
关键词 代码补全 多任务学习 Transformer 卷积神经网络 抽象语法树 轻量级语法 深度学习
在线阅读 下载PDF
面向恶意代码检测的深度注意力网络架构
7
作者 李思聪 王飞 +1 位作者 魏子令 陈曙晖 《信息网络安全》 北大核心 2025年第8期1208-1222,共15页
针对恶意代码变种激增导致传统检测方法效能不足的问题,文章提出一种基于混合多尺度注意力网络的恶意代码分类架构MSA-ResNet。该架构通过双线性插值算法实现图像尺寸标准化,有效保留易混淆恶意代码家族的纹理特征,并结合动态数据增强... 针对恶意代码变种激增导致传统检测方法效能不足的问题,文章提出一种基于混合多尺度注意力网络的恶意代码分类架构MSA-ResNet。该架构通过双线性插值算法实现图像尺寸标准化,有效保留易混淆恶意代码家族的纹理特征,并结合动态数据增强策略优化输入多样性。在网络架构中,将多尺度注意力模块嵌入ResNet50残差块末端,构建跨尺度特征交互机制,使特征点关联距离缩短,注意力收敛速度提升。实验结果表明,架构在Malimg数据集上实现99.47%的准确率与99.46%的宏平均F1分数,较传统ResNet50架构提升1.95%,参数量仅增加15%。与现有最优方法相比,分类精度提升0.49%,且对Obfuscator.AD等复杂恶意代码变种检测有效。 展开更多
关键词 恶意代码可视化 卷积神经网络 多尺度注意力机制 图像尺寸归一化算法 特征融合
在线阅读 下载PDF
采用轻量级卷积神经网络的H.266/通用视频编码跨分量预测
8
作者 邹承益 万帅 +1 位作者 朱志伟 尹宇杰 《西安交通大学学报》 北大核心 2025年第2期180-188,共9页
为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考... 为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考样本之间的空间关系,并应用于边界色度参考样本生成色度预测样本。为降低编解码复杂度,设计网络在二维完成特征融合和预测,优化了现有的同组参数处理不同块大小的训练策略。并且,引入宽度可变卷积,根据不同的块大小调整网络参数。实验结果表明:与H.266/VVC测试模型VTM18.0相比,所提网络在Y(亮度分量)、Cb(蓝色色度分量)、Cr(红色色度分量)上分别实现了0.30%、2.46%、2.25%的码率节省。与其他基于卷积神经网络的跨分量预测方法相比,有效地降低了网络参数和推理复杂度,分别节省了约10%的编码时间和19%的解码时间。 展开更多
关键词 通用视频编码 跨分量预测 轻量级卷积神经网络 注意力机制 宽度可变卷积
在线阅读 下载PDF
一种通过增强图像编码和非对称卷积网络的心音分类算法
9
作者 王晟懿 杨宏波 +1 位作者 潘家华 王威廉 《计算机科学》 北大核心 2025年第S1期118-125,共8页
文中提出了一种通过增强图像编码和非对称卷积网络的心音分类算法。与传统的基于统计特征和时频域特征提取心音的方法不同,该算法通过引入分数阶傅里叶变换(FrFT)分别对格拉姆角场(GAF)、马尔可夫场(MTF)、递归图(RP)3种图像编码方法进... 文中提出了一种通过增强图像编码和非对称卷积网络的心音分类算法。与传统的基于统计特征和时频域特征提取心音的方法不同,该算法通过引入分数阶傅里叶变换(FrFT)分别对格拉姆角场(GAF)、马尔可夫场(MTF)、递归图(RP)3种图像编码方法进行增强,构成FrFT-GAF,FrFT-MTF,FrFT-RP图像编码模块。运用上述图像编码模块将一维心音信号转换为二维编码特征图,并利用计算机视觉技术在分类任务中的优势,采用非对称卷积网络(ACNet)对心音的二维编码特征图进行分析处理,从而实现对心音的有效分类。此外,还分别对上述图像编码模块的性能进行了评估和比较。实验结果表明,在心音二分类任务中,FrFT-RP模块的分类效果最好,在数据集1和数据集2(Physio Net/CinC 2016数据集)上的准确率分别为0.981和0.977,F1分别为0.989和0.974。FrFT-MTF和FrFT-GAF模块的效果次之。使用FrFT增强图像编码特征后较以往方法有明显提升,为心音信号分类提供了新的思路和方法,有望应用于先心病机器辅助诊断。 展开更多
关键词 先天性心脏病 心音 图像编码 分数阶傅里叶变换 非对称卷积网络
在线阅读 下载PDF
基于余弦校验关系的卷积神经网络LDPC码盲识别
10
作者 陈文洁 张浦 +2 位作者 史高翔 刘林 刘烜 《系统工程与电子技术》 北大核心 2025年第9期3117-3125,共9页
针对低信噪比环境下低密度奇偶校验(low density parity check,LDPC)码的识别率低的问题,提出了一种基于余弦校验关系分布的卷积神经网络(convolutional neural network,CNN)算法。该算法基于码字与正确和错误校验矩阵的余弦校验关系统... 针对低信噪比环境下低密度奇偶校验(low density parity check,LDPC)码的识别率低的问题,提出了一种基于余弦校验关系分布的卷积神经网络(convolutional neural network,CNN)算法。该算法基于码字与正确和错误校验矩阵的余弦校验关系统计分布间的差异性,利用LDPC码与候选集校验矩阵计算得到的余弦校验关系的统计特性作为CNN的输入,利用CNN的深层信息挖掘能力,设计一种结构简单的四层CNN模型,实现LDPC码的有效识别。仿真结果表明,仅使用一个码字的条件下,在信噪比为3.25 dB时,对码率1/2、2/3B、3/4A、3/4B、5/6,码长2 304的LDPC码的正确识别率达到90%以上,与传统算法相比,性能提升了0.25~1.25 dB。 展开更多
关键词 低密度奇偶校验码 闭集识别 余弦校验关系 卷积神经网络
在线阅读 下载PDF
基于WTConv-KAN算法考虑刀具磨损的数控机床误差分析与预测
11
作者 王舒玮 《机床与液压》 北大核心 2025年第16期93-99,共7页
为了解决企业数控机床批量生产过程中刀具磨损导致的误差问题,通过对刀具磨损产生的误差类型进行整理和归纳,找出常见误差多发类型,分析误差的产生机制,掌握刀具磨损常见误差发生的概率。由于对企业数控机床进行实验分析的难度较大,利... 为了解决企业数控机床批量生产过程中刀具磨损导致的误差问题,通过对刀具磨损产生的误差类型进行整理和归纳,找出常见误差多发类型,分析误差的产生机制,掌握刀具磨损常见误差发生的概率。由于对企业数控机床进行实验分析的难度较大,利用开放式数控系统,建立刀具磨损误差信号数据库,采用小波卷积函数代替传统Kolmogorov-Arnold神经网络中的B样条函数,将误差信号通过小波变换转化为时频图,通过WTConv-KAN算法构建误差优化模型,对刀具磨损误差进行优化。对不同加工方式进行分析,相比LSTM算法、GWO-LSTM算法、GA-LSTM算法、KAN算法模型,所提WTConv-KAN模型具有更好的预测性能,为此类技术的工程示范推广奠定了基础。 展开更多
关键词 Kolmogorov-Arnold网络 小波卷积 数控机床 刀具磨损 误差分析与预测
在线阅读 下载PDF
基于GADF与SAM-LCNN机制的石化离心风机轴承故障诊断方法
12
作者 刘森 刘美 +2 位作者 韩惠子 崔坤 陈曦 《机电工程》 北大核心 2025年第1期72-81,共10页
针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差... 针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差场将轴承一维振动信号编码为二维图像;然后,构建了融合空间注意力机制的轻量化卷积神经网络;最后,将GADF转换所得二维图像作为融合空间注意力机制的轻量化卷积神经网络的输入,进行了特征提取与故障诊断,分别采用了广东石油化工学院的石化多级离心风机轴承故障数据集与凯斯西储大学轴承故障数据集,对该方法的有效性及优越性进行了验证。研究结果表明:两种数据集的测试集分类准确率分别为99.7%和98.5%;相较于卷积神经网络(CNN)、LeNet-5和MobileNetV2三种对比方法,该离心风机滚动轴承诊断方法具有诊断精度高、诊断速度快和泛化能力强等优点。该方法能够有效地对石化离心风机轴承故障振动信号进行分类,可为石化安全生产提供保障,同时也为其他机械设备故障诊断提供参考。 展开更多
关键词 离心风机 滚动轴承 图像编码 格拉姆角场 轻量化卷积神经网络 空间注意力机制
在线阅读 下载PDF
基于多频特征学习的恶意代码变种分类 被引量:3
13
作者 靳黎忠 薛慧琴 +2 位作者 段明博 赵旭俊 高改梅 《计算机工程与设计》 北大核心 2024年第7期1934-1940,共7页
针对恶意代码变种分类方法没有充分对原始输入进行分析的问题,提出一种更加高效的基于深度学习的办法,使用卷积神经网络对多频信息进行学习。对恶意代码转化而成的图像进行研究,利用小波变换进行多频和多层次的分析,抓住低频和高频特征... 针对恶意代码变种分类方法没有充分对原始输入进行分析的问题,提出一种更加高效的基于深度学习的办法,使用卷积神经网络对多频信息进行学习。对恶意代码转化而成的图像进行研究,利用小波变换进行多频和多层次的分析,抓住低频和高频特征;针对多频信息输入,设计一种多频特征学习模块,充分挖掘其中有用信息。实验结果表明,该方法在Malimg数据集上,相比其它两种恶意代码分类办法,分别取得了1.5%和0.8%的效果提升。 展开更多
关键词 恶意代码分类 多频特征 深度学习 小波变换 灰度图像 卷积神经网络 恶意代码家族
在线阅读 下载PDF
基于多模 态集成卷积神经网络的数控机床齿轮箱故障诊断 被引量:2
14
作者 姜广君 杨永吉 王赜 《机床与液压》 北大核心 2024年第8期202-207,共6页
针对数控机床齿轮箱在实际工作环境中负载多变且噪声干扰大、传统神经网络难以充分提取信号中的故障特征等问题,提出一种多模态集成卷积神经网络(MECNN)用于数控机床齿轮箱故障诊断。该方法将多模态融合技术与多个卷积神经网络结合,利... 针对数控机床齿轮箱在实际工作环境中负载多变且噪声干扰大、传统神经网络难以充分提取信号中的故障特征等问题,提出一种多模态集成卷积神经网络(MECNN)用于数控机床齿轮箱故障诊断。该方法将多模态融合技术与多个卷积神经网络结合,利用快速傅里叶变换方法将时域信号转换成频域信号;利用时域信号和频域信号对2个卷积神经网络进行训练,使模型能够分别从时域和频域2个角度提取特征,再将浅层特征融合;最后,将融合后的特征输入到卷积神经网络中进行故障特征的深度挖掘,并进行故障诊断。使用东南大学的齿轮箱数据集进行验证,设计了2种特征融合的方法并进行了对比。实验结果表明:在噪声下,MECNN模型用于故障诊断的准确性和鲁棒性均优于单一的时域CNN和频域CNN。 展开更多
关键词 数控机床齿轮箱 故障诊断 多模态学习 卷积神经网络
在线阅读 下载PDF
基于多特征优化的PolSAR数据农作物精细分类方法 被引量:1
15
作者 郭交 王鹤颖 +2 位作者 项诗雨 连嘉茜 王辉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期275-285,共11页
农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的... 农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的连续时序信息,有效提升表达作物遥感特征的丰富度,在农作物分类中独具优势。但多时相和多特征的引入必然导致模型运算量剧增,不利于工程应用。针对上述问题,本文提出了一种基于多特征优化的PolSAR数据农作物精细分类方法,首先对PolSAR数据进行多种极化目标分解及参数提取以获得多个散射特征;然后使用基于栈式稀疏自编码网络和ReliefF优选的方法进行特征增强与优化,获取最优特征集;最后构建具有2个分支结构的卷积神经网络,融合不同卷积深度输出的特征,完成农作物的高精度分类。通过对单时相数据的特征分析、单时相数据初步分类实验和多时相数据不同特征集结合分类器的对比实验,证明本文所提方法能够在低维特征输入的前提下,最大程度提取不同作物之间的差异性特征,准确高效地实现对农作物的精细分类,最高分类精度和Kappa系数分别达到97.69%和97.24%。 展开更多
关键词 农作物分类 POLSAR 栈式稀疏自编码网络 RELIEFF 卷积神经网络
在线阅读 下载PDF
基于卷积神经网络编码加扰类型识别
16
作者 卫翔 刘星璇 谭继远 《火力与指挥控制》 CSCD 北大核心 2024年第11期118-127,共10页
针对线性分组码加扰和卷积码加扰类型的识别问题,提出了一种利用相关特征和浅层神经网络相结合的加扰类型识别方法。推导了加扰序列码元的互相关特征,引入了有偏自相关函数,两者结合作为输入的相关特征;在分析加扰序列相关性的基础上,... 针对线性分组码加扰和卷积码加扰类型的识别问题,提出了一种利用相关特征和浅层神经网络相结合的加扰类型识别方法。推导了加扰序列码元的互相关特征,引入了有偏自相关函数,两者结合作为输入的相关特征;在分析加扰序列相关性的基础上,构建了实时性较强的浅层神经网络模型;将加扰数据集输入到网络模型中,完成了网络的训练和识别测试。仿真结果表明,相比于基于多重分型谱的传统算法,所提算法能识别多种加扰类型,同时所提算法的抗误码性能更强,为进一步进行扰码参数识别奠定了基础。 展开更多
关键词 线性分组码加扰 卷积码加扰 码元互相关 有偏自相关函数 浅层神经网络
在线阅读 下载PDF
针对VVC色度预测的注意力卷积神经网络算法 被引量:1
17
作者 王昂 何小海 +2 位作者 罗丹 熊淑华 陈洪刚 《电讯技术》 北大核心 2024年第11期1741-1749,共9页
针对多功能视频编码(Versatile Video Coding,VVC)标准中跨通道线性预测模型(Cross-Component Linear Model,CCLM)无法很好地拟合色度与亮度之间的非线性对应关系这一不足,提出了一种基于注意力机制卷积神经网络的VVC色度预测算法。该... 针对多功能视频编码(Versatile Video Coding,VVC)标准中跨通道线性预测模型(Cross-Component Linear Model,CCLM)无法很好地拟合色度与亮度之间的非线性对应关系这一不足,提出了一种基于注意力机制卷积神经网络的VVC色度预测算法。该算法主要思想是在进行色度预测时,使用对应亮度块的信息与待预测色度块上方与左方的信息作为参考信息输入进卷积神经网络,利用注意力机制对参考信息中的亮度与色度间的内在联系进行分配权重后输入预测网络。实验结果表明,相较于VVC标准算法U分量和V分量的平均码率节省分别为0.64%和0.68%,有效提升了VVC编码性能。 展开更多
关键词 多功能视频编码 帧内预测 注意力机制 卷积神经网络
在线阅读 下载PDF
一种基于类小波变换的无线电频谱监测数据无损压缩方法 被引量:3
18
作者 张承琰 郑明魁 +3 位作者 刘会明 易天儒 李少良 陈祖儿 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期152-158,共7页
无线电频谱监测海量数据存储和分析是无线电监管工作的重要组成部分。频谱数据具有时间相关性以及不同频点间的相关冗余,对此本文设计了一种基于类小波变换的无线电频谱监测数据无损压缩方法。该方法首先基于时间相关性将一维频谱信号... 无线电频谱监测海量数据存储和分析是无线电监管工作的重要组成部分。频谱数据具有时间相关性以及不同频点间的相关冗余,对此本文设计了一种基于类小波变换的无线电频谱监测数据无损压缩方法。该方法首先基于时间相关性将一维频谱信号转换成二维矩阵;转换成二维矩阵后数据在水平方向以及垂直方向都存在冗余,算法采用卷积神经网络来代替传统小波中的预测和更新模块,并引入了自适应压缩块来处理不同维度的特征,从而获得更紧凑的频谱数据表示。研究进一步设计了一种基于上下文的深度熵模型,利用类小波变换不同子带系数获得熵编码参数,以此估计累积概率,从而实现频谱数据的压缩。实验结果表明,与已有的Deflate等传统频谱监测数据无损压缩方法相比,本文算法有进一步的性能提升,与典型的JPEG2000、PNG、JPEG-LS等二维图像无损压缩方法相比,本文所提出的方法的压缩效果也提高了20%以上。 展开更多
关键词 频谱监测数据 无损压缩 类小波变换 卷积神经网络 熵编码
在线阅读 下载PDF
基于块编码特点的压缩视频质量增强算法 被引量:1
19
作者 于海 杨磊 +4 位作者 高阳 刘枫琪 刘鹏宇 孙萱 张悦 《北京工业大学学报》 CAS CSCD 北大核心 2024年第9期1069-1076,共8页
针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强... 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强算法。实验结果表明:相较于高效视频编码(high efficiency video coding, HEVC)标准H.265,所提算法在低延迟(low delay, LD)配置下且量化参数(quantization parameter, QP)为37时,峰值信噪比(peak signal-to-noise ratio, PSNR)提升了0.465 2 dB;相较于数据压缩会议(data compression conference, DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network, MGANet)方法,该算法PSNR的增长量提升了15.1%。 展开更多
关键词 视频编码 高效视频编码(high efficiency video coding HEVC) 压缩视频质量增强 深度学习 卷积神经网络(convolutional neural network CNN) 三维卷积神经网络(3D convolutional neural network 3D-CNN)
在线阅读 下载PDF
基于CB-Attention的JavaScript恶意混淆代码检测方法
20
作者 徐鑫 张志宁 +2 位作者 吕云山 李立 郑玉杰 《计算机工程与设计》 北大核心 2024年第8期2298-2305,共8页
当今JavaScript代码混淆方法日益多样,现有检测方法在对混淆代检测时会出现漏报和误报的情况,为解决该问题,提出一种基于CB-Attention的JavaScript恶意代码检测方法。由SDPCNN模型和BiLSTM+Attention模型构成,SDPCNN对短距离间的语义特... 当今JavaScript代码混淆方法日益多样,现有检测方法在对混淆代检测时会出现漏报和误报的情况,为解决该问题,提出一种基于CB-Attention的JavaScript恶意代码检测方法。由SDPCNN模型和BiLSTM+Attention模型构成,SDPCNN对短距离间的语义特征信息进行提取,BiLSTM+Attention获取JavaScript代码中长距离间的语义信息特征。为验证所提方法的有效性,将该方法与其它方法进行对比,对比结果表明,该方法具有较好的检测效果,F1-Score可达98.78%。 展开更多
关键词 JavaScript恶意代码 混淆代码 检测模型 增强深度金字塔卷积神经网络 注意力网络 双向长短时记忆网络 长距离特征信息 抽象语法树
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部