In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coeffici...In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coefficients and reflection by using the Fourier transform.In spite of the classical method for solution,we are to give another method,therefore the general solution and condition of solvability are obtained in class{0}.展开更多
In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is t...In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is transformed to discrete system of equations, and then we obtain the solvable conditions and the explicit solutions in class L2[-π, π].展开更多
基金Supported by the Qufu Normal University Youth Fund(XJ201218)
文摘In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coefficients and reflection by using the Fourier transform.In spite of the classical method for solution,we are to give another method,therefore the general solution and condition of solvability are obtained in class{0}.
基金Supported by the Qufu Normal University Youth Fund(XJ201218)
文摘In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is transformed to discrete system of equations, and then we obtain the solvable conditions and the explicit solutions in class L2[-π, π].