In this paper,we combine L-fuzzy syntopogenous structure on X with algebraic structure on X.First,the *-increasing and *-decreasing spaces have been studied.Second,we define a-order-convexity on syntopogenous structur...In this paper,we combine L-fuzzy syntopogenous structure on X with algebraic structure on X.First,the *-increasing and *-decreasing spaces have been studied.Second,we define a-order-convexity on syntopogenous structures(X,S,≤).some important properties of a-order-convexity have been obtained.展开更多
This paper deals with multiobjective programming problems with support functions under (G, C, ρ)-convexity assumptions. Not only sufficient but also necessary optimality conditions for this kind of multiobjective p...This paper deals with multiobjective programming problems with support functions under (G, C, ρ)-convexity assumptions. Not only sufficient but also necessary optimality conditions for this kind of multiobjective programming problems are established from a viewpoint of (G, C, ρ)-convexity. When the sufficient conditions are utilized, the corresponding duality theorems are derived for general Mond-Weir type dual program.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure ...Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed.展开更多
The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility...The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility problem.Compared with the existing accelerated methods for solving the problem,the inertial technique employs a parameter sequence and two previous iterations to get the next iteration and hence improves the flexibility of the algorithm.Theoretical asymptotic convergence results are presented under some suitable conditions.Numerical simulations illustrate that the new methods have better convergence than the general projection methods.The presented algorithms are inspired by the inertial proximal point algorithm for finding zeros of a maximal monotone operator.展开更多
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
The 3D clearance of a high-speed train(HST) is critical to ensure the safety of railway transportation. Many studies have been conducted on the inspection of the clearance profile in railway operation based on the vis...The 3D clearance of a high-speed train(HST) is critical to ensure the safety of railway transportation. Many studies have been conducted on the inspection of the clearance profile in railway operation based on the vision system, but few researchers have focused on the computation of the 3D clearance in the design phase of an HST. This paper summarizes the virtual 3D clearance computation of an HST based on model integration and the convex hull method. First, both the aerodynamic and kinetic analysis models of the HST are constructed. The two models are then integrated according to the corresponding relationship map, and an array of transformation matrixes of the HST is created to drive the designed model simulating the physical railway motion. Furthermore, the convex hull method is adopted to compute the 3D envelope of the moving train. Finally, the Hausdorff metric is involved in the measurement of the minimum clearance model and the 3D envelope model. In addition, the color map of the Hausdorff distance is established to verify that the designed shape of the HST meets the national standards. This paper provides an effective method to accurately calculate the 3D clearance for the shape design of an HST, which greatly reduces the development cost by minimizing the physical prototype that must be built.展开更多
The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is est...An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is established.Moreover,compared with the existing projection hyperplanes methods with subgradient,the proposed hyperplanes are interactive with ε,and their ranges are more larger.The convergence of the proposed algorithm is given under some mild conditions,and the validity of the algorithm is proved by the numerical test.展开更多
The stabilization problem of linear time-varying systems with both state and input constraints is considered. Sufficient conditions for the existence of the solution to this problem are derived and a gain-switched(ga...The stabilization problem of linear time-varying systems with both state and input constraints is considered. Sufficient conditions for the existence of the solution to this problem are derived and a gain-switched(gain-scheduled) state feedback control scheme is built to stabilize the constrained timevarying system. The design problem is transformed to a series of convex feasibility problems which can be solved efficiently. A design example is given to illustrate the effect of the proposed algorithm.展开更多
Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In ...Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In the p aper a predictor-corrector interior-point algorithm for linearly constrained c onvex programming under the predictor-corrector motivation was proposed. In eac h iteration, the algorithm first performs a predictor-step to reduce the dualit y gap and then a corrector-step to keep the points close to the central traject ory. Computations in the algorithm only require that the initial iterate be nonn egative while feasibility or strict feasibility is not required. It is proved th at the algorithm is equivalent to a level-1 perturbed composite Newton method. Numerical experiments on twenty-six standard test problems are made. The result s show that the proposed algorithm is stable and robust.展开更多
文摘In this paper,we combine L-fuzzy syntopogenous structure on X with algebraic structure on X.First,the *-increasing and *-decreasing spaces have been studied.Second,we define a-order-convexity on syntopogenous structures(X,S,≤).some important properties of a-order-convexity have been obtained.
基金supported by the Natural Science Foundation of Guangdong Province under Grant No.S2013010013101the Science Foundations of Hanshan Normal University under Grant Nos.QD20131101and LZ201403
文摘This paper deals with multiobjective programming problems with support functions under (G, C, ρ)-convexity assumptions. Not only sufficient but also necessary optimality conditions for this kind of multiobjective programming problems are established from a viewpoint of (G, C, ρ)-convexity. When the sufficient conditions are utilized, the corresponding duality theorems are derived for general Mond-Weir type dual program.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金Work supported by the Second Stage of Brain Korea 21 Projects Work(2010-0020163) supported by the Priority Research Centers Program through the National Research Foundation (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed.
基金supported by the National Natural Science Foundation of China (11171221)Shanghai Municipal Committee of Science and Technology (10550500800)+1 种基金Basic and Frontier Research Program of Science and Technology Department of Henan Province (112300410277,082300440150)China Coal Industry Association Scientific and Technical Guidance to Project (MTKJ-2011-403)
文摘The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility problem.Compared with the existing accelerated methods for solving the problem,the inertial technique employs a parameter sequence and two previous iterations to get the next iteration and hence improves the flexibility of the algorithm.Theoretical asymptotic convergence results are presented under some suitable conditions.Numerical simulations illustrate that the new methods have better convergence than the general projection methods.The presented algorithms are inspired by the inertial proximal point algorithm for finding zeros of a maximal monotone operator.
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.
基金Projects(51605495,51575541)supported by the National Natural Science Foundation of ChinaProject(2015JJ2168)supported by the Natural Science Foundation of Hunan Province of China
文摘The 3D clearance of a high-speed train(HST) is critical to ensure the safety of railway transportation. Many studies have been conducted on the inspection of the clearance profile in railway operation based on the vision system, but few researchers have focused on the computation of the 3D clearance in the design phase of an HST. This paper summarizes the virtual 3D clearance computation of an HST based on model integration and the convex hull method. First, both the aerodynamic and kinetic analysis models of the HST are constructed. The two models are then integrated according to the corresponding relationship map, and an array of transformation matrixes of the HST is created to drive the designed model simulating the physical railway motion. Furthermore, the convex hull method is adopted to compute the 3D envelope of the moving train. Finally, the Hausdorff metric is involved in the measurement of the minimum clearance model and the 3D envelope model. In addition, the color map of the Hausdorff distance is established to verify that the designed shape of the HST meets the national standards. This paper provides an effective method to accurately calculate the 3D clearance for the shape design of an HST, which greatly reduces the development cost by minimizing the physical prototype that must be built.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
基金supported by the National Natural Science Foundation of China (10671126)Shanghai Leading Academic Discipline Project(S30501)
文摘An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is established.Moreover,compared with the existing projection hyperplanes methods with subgradient,the proposed hyperplanes are interactive with ε,and their ranges are more larger.The convergence of the proposed algorithm is given under some mild conditions,and the validity of the algorithm is proved by the numerical test.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2007AA809502C) National Natural Science Foundation of China (50979093) Program for New Century Excellent Talents in University (NCET-06-0877)
基金supported by the National Natural Science Foundation of China(6132106261503100)the China Postdoctoral Science Foundation(2014M550189)
文摘The stabilization problem of linear time-varying systems with both state and input constraints is considered. Sufficient conditions for the existence of the solution to this problem are derived and a gain-switched(gain-scheduled) state feedback control scheme is built to stabilize the constrained timevarying system. The design problem is transformed to a series of convex feasibility problems which can be solved efficiently. A design example is given to illustrate the effect of the proposed algorithm.
文摘Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In the p aper a predictor-corrector interior-point algorithm for linearly constrained c onvex programming under the predictor-corrector motivation was proposed. In eac h iteration, the algorithm first performs a predictor-step to reduce the dualit y gap and then a corrector-step to keep the points close to the central traject ory. Computations in the algorithm only require that the initial iterate be nonn egative while feasibility or strict feasibility is not required. It is proved th at the algorithm is equivalent to a level-1 perturbed composite Newton method. Numerical experiments on twenty-six standard test problems are made. The result s show that the proposed algorithm is stable and robust.