期刊文献+
共找到31,051篇文章
< 1 2 250 >
每页显示 20 50 100
Normalized Solutions of Nonlinear Choquard Equations with Nonconstant Potential
1
作者 LI Nan XU Liping 《应用数学》 北大核心 2025年第1期14-29,共16页
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ... In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods. 展开更多
关键词 Nonlinear Choquard equation Potential function Variational method Normalized solution
在线阅读 下载PDF
Two Second-Order Ecient Numerical Schemes for the Boussinesq Equations
2
作者 LIU Fang WANG Danxia ZHANG Jianwen 《应用数学》 北大核心 2025年第1期114-129,共16页
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t... In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes. 展开更多
关键词 Scalar auxiliary variable approach Pressure-correction method Fully decoupled Unconditional stability Boussinesq equations
在线阅读 下载PDF
Trajectory equations of interaction and evolution behaviors of a novel multi-soliton to a (2+1)-dimensional shallow water wave model
3
作者 Xi-Yu Tan Wei Tan 《Chinese Physics B》 2025年第4期238-248,共11页
Based on a new bilinear equation,we investigated some new dynamic behaviors of the(2+1)-dimensional shallow water wave model,such as hybridization behavior between different solitons,trajectory equations for lump coll... Based on a new bilinear equation,we investigated some new dynamic behaviors of the(2+1)-dimensional shallow water wave model,such as hybridization behavior between different solitons,trajectory equations for lump collisions,and evolution behavior of multi-breathers.Firstly,the N-soliton solution of Ito equation is studied,and some high-order breather waves can be obtained from the N-soliton solutions through paired-complexification of parameters.Secondly,the high-order lump solutions and the hybrid solutions are obtained by employing the long-wave limit method,and the motion velocity and trajectory equations of high-order lump waves are analyzed.Moreover,based on the trajectory equations of the higher-order lump solutions,we give and prove the trajectory theorem of 1-lump before and after interaction with nsoliton.Finally,we obtain some new lump solutions from the multi-solitons by constructing a new test function and using the parameter limit method.Meanwhile,some evolutionary behaviors of the obtained solutions are shown through a large number of three-dimensional graphs with different and appropriate parameters. 展开更多
关键词 Ito equation trajectory equation multi-solitons dynamic behavior
在线阅读 下载PDF
MOUNTAIN-PASS SOLUTION FOR A KIRCHHOFF TYPE ELLIPTIC EQUATION
4
作者 Lifu WENG Xu ZHANG Huansong ZHOU 《Acta Mathematica Scientia》 2025年第2期385-400,共16页
We are concerned with a nonlinear elliptic equation,involving a Kirchhoff type nonlocal term and a potential V(x),onℝ3.As is well known that,even in,H_(r)^(1)(R^(3)),the nonlinear term is a pure power form of∣u∣^(p−... We are concerned with a nonlinear elliptic equation,involving a Kirchhoff type nonlocal term and a potential V(x),onℝ3.As is well known that,even in,H_(r)^(1)(R^(3)),the nonlinear term is a pure power form of∣u∣^(p−1)u and V(x)≡1,it seems very difficult to apply the mountain-pass theorem to get a solution(i.e.,mountain-pass solution)to this kind of equation for all p∈(1,5),due to the difficulty of verifying the boundedness of the PalaisSmale sequence obtained by the mountain-pass theorem when p∈(1,3).In this paper,we find a new strategy to overcome this difficulty,and then get a mountain-pass solution to the equation for all p∈(1,5)and for both V(x)being constant and nonconstant.Also,we find a possibly optimal condition on V(x). 展开更多
关键词 elliptic equation ground state mountain-pass solution Kirchhoff equation
在线阅读 下载PDF
CLASSIFICATION OF SELF-SIMILAR SOLUTIONS OF THE DEGENERATE POLYTROPIC FILTRATION EQUATIONS
5
作者 Zhipeng LIU Shanming JI 《Acta Mathematica Scientia》 2025年第2期615-635,共21页
In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with ... In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with N≥1,m>0,p>1,such that m(p-1)>1.We give a clear classification of the self-similar solutions of the form u(x,t)=(βt)^(-α/β)((βt)^(-1/β)|x|)withα∈R andβ=α[m(p-1)-1]+p,regular or singular at the origin point.The existence and uniqueness of some solutions are established by the phase plane analysis method,and the asymptotic properties of the solutions near the origin and the infinity are also described.This paper extends the classical results of self-similar solutions for degeneratep-Laplace heat equation by Bidaut-Véron[Proc Royal Soc Edinburgh,2009,139:1-43]to the doubly nonlinear degenerate diffusion equations. 展开更多
关键词 self-similar solutions polytropic filtration equation degenerate diffusion equation doubly nonlinear diffusion
在线阅读 下载PDF
Normalized Solutions for p-Laplacian Schrödinger-Poisson Equations with L^(2)-Supercritical Growth
6
作者 LI Mingxue ZHANG Jiafeng 《数学理论与应用》 2025年第1期45-61,共17页
In this paper,we consider the p-Laplacian Schrödinger-Poisson equation with L^(2)-norm constraint-Δ_(p)u+|u|^(p-2)u+λu+(1/4π|x|*|u|^(2))u=|u|^(q-2)u,x∈R^(3),where 2≤p<3,5p/3<q<p*=3p/3-p,λ>0 is a... In this paper,we consider the p-Laplacian Schrödinger-Poisson equation with L^(2)-norm constraint-Δ_(p)u+|u|^(p-2)u+λu+(1/4π|x|*|u|^(2))u=|u|^(q-2)u,x∈R^(3),where 2≤p<3,5p/3<q<p*=3p/3-p,λ>0 is a Lagrange multiplier.We obtain the critical point of the corresponding functional of the problem on mass constraint by the variational method and the Mountain pass lemma,and then find a normalized solution to this equation. 展开更多
关键词 Normalized solution p-Laplacian equation Schrödinger-Poisson equation Mountain pass lemma
在线阅读 下载PDF
ON RADIALITY OF MINIMIZERS TO L^(2) SUPERCRITICAL SCHRODINGER POISSON EQUATIONS WITH GENERAL NONLINEARITIES
7
作者 Chengcheng WU Linjie SONG 《Acta Mathematica Scientia》 2025年第2期684-694,共11页
We investigate the radial symmetry of minimizers on the Pohozaev-Nehari manifold to the Schrodinger Poisson equation with a general nonlinearity f(u).Particularly,we allow that f is L^(2) supercritical.The main result... We investigate the radial symmetry of minimizers on the Pohozaev-Nehari manifold to the Schrodinger Poisson equation with a general nonlinearity f(u).Particularly,we allow that f is L^(2) supercritical.The main result shows that minimizers are radially symmetric modulo suitable translations. 展开更多
关键词 Schrodinger-Poisson equations radial symmetry Pohozaev-Nehari manifold
在线阅读 下载PDF
Darboux transformation,positon solution,and breather solution of the third-order flow Gerdjikov–Ivanov equation
8
作者 Shuzhi Liu Ning-Yi Li +1 位作者 Xiaona Dong Maohua Li 《Chinese Physics B》 2025年第1期195-202,共8页
The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,ratio... The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,rational solution,positon solution,and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution.The exact solutions and dynamic properties of the Gerdjikov–Ivanov(GI)equation and the TOFGI equation are compared in detail under the same conditions,and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations. 展开更多
关键词 third-order flow Gerdjikov-Ivanov equation solitons positons BREATHERS
在线阅读 下载PDF
A GENERALIZED CHOQUARD EQUATION WITH WEIGHTED ANISOTROPIC STEIN-WEISS POTENTIAL ON A NONREFLEXIVE ORLICZ-SOBOLEV SPACES
9
作者 Lucas DA SILVA Marco A.S.SOUTO 《Acta Mathematica Scientia》 2025年第2期569-601,共33页
In this paper we investigate the existence of solution for the following nonlocal problem with Stein-Weiss convolution term-△Φu+V(x)Φ(|u|)u=1/|x|α(∫R^(N)K(y)F(u(y))/|x-y|Y(λ)|y|^(α)dy)K(x)f(u(x)),x∈R^(N),wher... In this paper we investigate the existence of solution for the following nonlocal problem with Stein-Weiss convolution term-△Φu+V(x)Φ(|u|)u=1/|x|α(∫R^(N)K(y)F(u(y))/|x-y|Y(λ)|y|^(α)dy)K(x)f(u(x)),x∈R^(N),where a≥0,N≥2,λ>0 is a positive parameter,V,K∈C(R^(N),[0,∞))are nonne-gative functions that may vanish at infinity,the function f E C(R,R)is quasicritical and F(t)=∫_(0)^(t)f(s)ds.To establish our existence and regularity results,we use the Hardy-type inequalities for Orlicz-Sobolev Space and the Stein-Weiss inequality together with a varia-tional technique based on the mountain pass theorem for a functional that is not necessarily in C'.Furthermore,we also prove the existence of a ground state solution by the method of Nehari manifold in the case where the strict monotonicity condition on f is not required.This work incorporates the case where the N-functionΦdoes not verify the△_(2)-condition. 展开更多
关键词 Orlicz-Sobolev spaces variational methods Choquard equation nonrefexive spaces
在线阅读 下载PDF
JERISON-LEE IDENTITIES AND SEMI-LINEAR SUBELLIPTIC EQUATIONS ON HEISENBERG GROUP
10
作者 Xinan MA Qianzhong OU Tian WU 《Acta Mathematica Scientia》 2025年第1期264-279,共16页
In the study of the extremal for Sobolev inequality on the Heisenberg group and the Cauchy-Riemann(CR)Yamabe problem,Jerison-Lee found a three-dimensional family of differential identities for critical exponent subell... In the study of the extremal for Sobolev inequality on the Heisenberg group and the Cauchy-Riemann(CR)Yamabe problem,Jerison-Lee found a three-dimensional family of differential identities for critical exponent subelliptic equation on Heisenberg groupℍn by using the computer in[5].They wanted to know whether there is a theoretical framework that would predict the existence and the structure of such formulae.With the help of dimension conservation and invariant tensors,we can answer the above question. 展开更多
关键词 Cauchy-Riemann Yamabe problem subelliptic equations Jerison-Lee identities
在线阅读 下载PDF
New interaction solutions in Mel’nikov equation obtained by modulating the phase shift
11
作者 Mi Chen Zhen Wang 《Chinese Physics B》 2025年第4期229-236,共8页
The degradation and nonlinear interactions of a two-breather solution of the Mel’nikov equation are analyzed.By modulating the phase shift and limit method,we prove that in different regions near the non-singular bou... The degradation and nonlinear interactions of a two-breather solution of the Mel’nikov equation are analyzed.By modulating the phase shift and limit method,we prove that in different regions near the non-singular boundaries,there are four kinds of solutions with repulsive interaction or attractive interaction in addition to the two-breather solution.They are the interaction solution between soliton and breather,the two-soliton solution,and the two-breather solution with small amplitude,which all exhibit repulsive interactions;and the two-breather solution with small amplitude,which exhibits attractive interaction.Interestingly,a new breather acts as a messenger to transfer energy during the interaction between two breather solutions with small amplitude. 展开更多
关键词 Mel’nikov equation breather solution phase shift
在线阅读 下载PDF
Evaluation of detonation performance of explosives ICM-101,ONC,and TNAZ based on improved VHL equation of state
12
作者 Yong Han Qin Liu +2 位作者 Yingliang Duan Yaqi Zhao Xinping Long 《Defence Technology(防务技术)》 2025年第2期83-97,共15页
Detonation performance is crucial for evaluating the power of high explosives(HEs),and the equation of state(EOS)that accurately describes the high-temperature,high-pressure,and high-temperature,medium-pressure states... Detonation performance is crucial for evaluating the power of high explosives(HEs),and the equation of state(EOS)that accurately describes the high-temperature,high-pressure,and high-temperature,medium-pressure states of detonation products is key to assessing the damage efficiency of these energetic materials.This article examines the limitations of the VLW EOS in representing the thermodynamic states of explosive detonation gas products under high-temperature and medium-to high-pressure conditions.A new gas EOS for detonation products,called VHL(Virial-Han-Long),is proposed.The accuracy of VHL in describing gas states under high-temperature and medium-to high-pressure conditions is verified,and its performance in evaluating explosive detonation and working capabilities is explored.The results demonstrate that VHL exhibits high precision in calculating detonation performance.Subsequently,the detonation performance of three new HEs(ICM-101,ONC,and TNAZ)was calculated and compared to traditional HEs(TATB,CL-20,and HMX).The results indicate that ONC has superior detonation performance compared to the other explosives,while ICM-101 shows a detonation velocity similar to CL-20 but with slightly lower detonation pressure.The detonation characteristics of TNAZ are comparable to those of the standard HE HMX.From the perspective of products,considering the comprehensive work performance(mechanical work and detonation heat),both ONC and ICM-101demonstrate relatively superior performance. 展开更多
关键词 equation of state Detonation performance Working capability THERMODYNAMICS High explosive
在线阅读 下载PDF
几何补偿型Bernoulli Equation的控制阀调节特性设计方法
13
作者 李忠 王渭 +2 位作者 明友 陈凤官 耿圣陶 《中南大学学报(自然科学版)》 北大核心 2025年第1期90-99,共10页
高性能多级射流控制阀是舷侧排气系统的核心控制装置,其性能直接影响舰船的红外隐身性能。针对现有控制类阀门难以满足系统高精度调控、快速响应的难题,首先,在借鉴传统控制阀调节特性设计的基础上,建立典型工况下射流控制阀多目标集成... 高性能多级射流控制阀是舷侧排气系统的核心控制装置,其性能直接影响舰船的红外隐身性能。针对现有控制类阀门难以满足系统高精度调控、快速响应的难题,首先,在借鉴传统控制阀调节特性设计的基础上,建立典型工况下射流控制阀多目标集成化函数;其次,采用无限逼近原则对现有流量系数公式进行几何形状修正补偿,提出一种基于Bernoulli Equation的多级射流控制阀调节特性计算模型;最后,通过理论设计、数值模拟和试验验证相结合的方法,研究控制阀调节特性,并依据数据修正计算模型、迭代优化结构参数进而分析调控特性。研究结果表明:提出的方法可实现射流控制阀等百分比和线性2种调节特性的高效准确设计,2种调节特性的设计值和试验值的变化规律具有一致性,流量系数最大相对误差不超10%,满足工业标准要求。设计的方法具有准确性和适用性,可减少工程盲目试凑和试验反复迭代改进的成本。 展开更多
关键词 射流控制阀 几何补偿 伯努利方程 调节特性 设计方法
在线阅读 下载PDF
SHARP MORREY REGULARITY THEORY FOR A FOURTH ORDER GEOMETRICAL EQUATION 被引量:1
14
作者 向长林 郑高峰 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期420-430,共11页
This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽... This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems. 展开更多
关键词 fourth order elliptic equation regularity theory Morrey space decay estimates Riesz potential
在线阅读 下载PDF
Some Modified Equations of the Sine-Hilbert Type
15
作者 闫铃娟 刘亚杰 胡星标 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期1-6,共6页
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based... Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived. 展开更多
关键词 BILINEAR equationS equation
在线阅读 下载PDF
Theoretical study of particle and energy balance equations in locally bounded plasmas
16
作者 Hyun-Su JUN Yat Fung TSANG +1 位作者 Jae Ok YOO Navab SINGH 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期89-98,共10页
In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all pl... In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2). 展开更多
关键词 particle balance equation energy balance equation low temperature plasmas
在线阅读 下载PDF
Data-Driven Ai-and Bi-Soliton of the Cylindrical Korteweg-de Vries Equation via Prior-Information Physics-Informed Neural Networks
17
作者 田十方 李彪 张钊 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期1-6,共6页
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si... By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation. 展开更多
关键词 equation SOLITON CYLINDRICAL
在线阅读 下载PDF
THE STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION AROUND THE HYDROSTATIC BALANCE
18
作者 Saiguo XU Zhong TAN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1466-1486,共21页
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss... This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3). 展开更多
关键词 Boussinesq equations partial dissipation stability DECAY
在线阅读 下载PDF
THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARDPOTENTIAL
19
作者 刘吕桥 曾娟 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期455-473,共19页
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e... In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates. 展开更多
关键词 Boltzmann equation Gevrey regularity non-cutoff hard potential
在线阅读 下载PDF
Prediction of ILI following the COVID-19 pandemic in China by using a partial differential equation
20
作者 Xu Zhang Yu-Rong Song Ru-Qi Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期118-128,共11页
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in... The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease. 展开更多
关键词 partial differential equations INFLUENZA SIS model PREDICTION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部