By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay result...A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay results of the energy are established via suitable Lyapunov functionals and some properties of the convex functions. Our result is obtained without imposing any restrictive growth assumption on the damping term and the elements of the matrix A and the kernel function g.展开更多
Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solut...Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.展开更多
By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact...By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions.展开更多
With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coeff...With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coefficients. These solutions include solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time.展开更多
This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructe...This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructed through the Darboux transformation,along with the expression for N-soliton solutions.Influence of coefficients that are taken as a function of time instead of a constant,i.e.,coefficient functionδ(t),on the solutions is investigated by choosing the coefficient functionδ(t),and the dynamics of the solutions are analyzed.This article utilizes the Lax pair to construct infinite conservation laws and extends it to nonlocal equations.The study of infinite conservation laws for nonlocal equations holds significant implications for the integrability of nonlocal equations.展开更多
Consider the neutral equation with variable coefficients dt[x(t) - P(t)x(t - γ)] + Q(t)x(t -σ) =0where P,Q∈C[[t0,,∞),R+] and σ,∈R+. We obtain some new sufficient conditions for the oscillation of soutions of the...Consider the neutral equation with variable coefficients dt[x(t) - P(t)x(t - γ)] + Q(t)x(t -σ) =0where P,Q∈C[[t0,,∞),R+] and σ,∈R+. We obtain some new sufficient conditions for the oscillation of soutions of the.abave equation without the restriction:0 P(t) 1 or P(t) 1.展开更多
We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota b...We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.展开更多
There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Pain...There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Painlevétest is used for the higher order generalized non-autonomous equation and the third order Korteweg-de Vries equation with variable coefficients.Finally the Painlevéintegrability condition of this equation is gotten.展开更多
We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,ex...We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.展开更多
This paper constructs more general exact solutions than N-soliton solution and Wronskian solution for variable- coefficient Kadomtsev-Petviashvili (KP) equation. By using the Hirota method and Pfaffian technique, it...This paper constructs more general exact solutions than N-soliton solution and Wronskian solution for variable- coefficient Kadomtsev-Petviashvili (KP) equation. By using the Hirota method and Pfaffian technique, it finds the Grammian determinant-type solution for the variable-coefficient KP equation (VCKP), the Wronski-type Pfaffian solution and the Gram-type Pfaffian solutions for the Pfaffianized VCKP equation.展开更多
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the...In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.展开更多
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé...This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.展开更多
The prolongation structure methodologies of Wahlquist-Estabrook [Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1] for nonlinear differential equations are applied to a variable-coefficient KdV equation. Based...The prolongation structure methodologies of Wahlquist-Estabrook [Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1] for nonlinear differential equations are applied to a variable-coefficient KdV equation. Based on the obtained prolongation structure, a Lie algebra with five parameters is constructed. Under certain conditions, a Lie algebra representation and three kinds of Lax pairs for the variable coefficient KdV equation are derived.展开更多
New type of variable-coefficient KP equation with self-consistent sources and its Grammian solutions are obtained by using the source generation procedure.
This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the beh...This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the behavior of the coefficients when time variable tends to positive infinity.Moreover,the global existence of solutions are discussed for non-positive exponents.展开更多
Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrǒdinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent v...Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrǒdinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane by means of the multi-scale expansion method in two different ways, with and without the so-called y-average trick. The non-auto-Bǎcklund transformations are found to transform the derived variable coefficient equations to the corresponding standard KdV, mKdV and NLS equations. Thus, many possible exact solutions can be obtained by taking advantage of the known solutions of these standard equations. Further, many approximate solutions of the original model are ready to be yielded which might be applied to explain some real atmospheric phenomena, such as atmospheric blocking episodes.展开更多
The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be construc...The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.展开更多
By means of the method of solid angle coefficients and the permutation formula on the building domain of complex biballs,direct solutions of some singular integral equations with variable coefficients are discussed an...By means of the method of solid angle coefficients and the permutation formula on the building domain of complex biballs,direct solutions of some singular integral equations with variable coefficients are discussed and the explicit formulas for these solutions are obtained.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
文摘A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay results of the energy are established via suitable Lyapunov functionals and some properties of the convex functions. Our result is obtained without imposing any restrictive growth assumption on the damping term and the elements of the matrix A and the kernel function g.
文摘Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.
基金Supported by the Natural Science Foundation of Education Committee of Henan Province(2003110003)
文摘By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions.
基金Supported by the Science Research Foundation of Zhanjiang Normal University(L0803)
文摘With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coefficients. These solutions include solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time.
基金supported by the National Natural Science Foundation of China (Grant No.11505090)Liaocheng University Level Science and Technology Research Fund (Grant No.318012018)+2 种基金Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology (Grant No.319462208)Research Award Foundation for Outstanding Young Scientists of Shandong Province (Grant No.BS2015SF009)the Doctoral Foundation of Liaocheng University (Grant No.318051413)。
文摘This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructed through the Darboux transformation,along with the expression for N-soliton solutions.Influence of coefficients that are taken as a function of time instead of a constant,i.e.,coefficient functionδ(t),on the solutions is investigated by choosing the coefficient functionδ(t),and the dynamics of the solutions are analyzed.This article utilizes the Lax pair to construct infinite conservation laws and extends it to nonlocal equations.The study of infinite conservation laws for nonlocal equations holds significant implications for the integrability of nonlocal equations.
文摘Consider the neutral equation with variable coefficients dt[x(t) - P(t)x(t - γ)] + Q(t)x(t -σ) =0where P,Q∈C[[t0,,∞),R+] and σ,∈R+. We obtain some new sufficient conditions for the oscillation of soutions of the.abave equation without the restriction:0 P(t) 1 or P(t) 1.
基金supported by the National Natural Science Foundation of China (Grant Nos.11975204 and 12075208)the Project of Zhoushan City Science and Technology Bureau (Grant No.2021C21015)the Training Program for Leading Talents in Universities of Zhejiang Province。
文摘We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.
基金Supported by the Shanxi Education Department Project(Grant No.J2020398)Key Natural Science Projects of Shanxi Energy Institute(Grant No.ZZ-2018003)。
文摘There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Painlevétest is used for the higher order generalized non-autonomous equation and the third order Korteweg-de Vries equation with variable coefficients.Finally the Painlevéintegrability condition of this equation is gotten.
基金supported by the National Natural Science Foundation of China(11971276,12171287)Natural Science Foundation of Shandong Province(ZR2016JL004)+1 种基金supported by the China Postdoctoral Science Foundation(2021TQ0017,2021M700244)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210019)。
文摘We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.
基金Project supported by the National Key Basic Research Project of China (2004CB318000), the National Science Foundation of China (Grant No 10371023) and Shanghai Shuguang Project of China (Grant No 02SG02).
文摘This paper constructs more general exact solutions than N-soliton solution and Wronskian solution for variable- coefficient Kadomtsev-Petviashvili (KP) equation. By using the Hirota method and Pfaffian technique, it finds the Grammian determinant-type solution for the variable-coefficient KP equation (VCKP), the Wronski-type Pfaffian solution and the Gram-type Pfaffian solutions for the Pfaffianized VCKP equation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771196 and 10831003)the Innovation Project of Zhejiang Province of China(Grant No.T200905)
文摘In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11505090)Research Award Foundation for Outstanding Young Scientists of Shandong Province(Grant No.BS2015SF009)+2 种基金the Doctoral Foundation of Liaocheng University(Grant No.318051413)Liaocheng University Level Science and Technology Research Fund(Grant No.318012018)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(Grant No.319462208).
文摘This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10735030and90718041)the Shanghai Leading Academic Discipline Project,China(Grant No.B412)+1 种基金the Program for Changjiang Scholars,the Innovative Research Team in University,Ministry of Education of China(Grant No.IRT0734)the K.C.Wong Magna Fund in Ningbo University,China
文摘The prolongation structure methodologies of Wahlquist-Estabrook [Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1] for nonlinear differential equations are applied to a variable-coefficient KdV equation. Based on the obtained prolongation structure, a Lie algebra with five parameters is constructed. Under certain conditions, a Lie algebra representation and three kinds of Lax pairs for the variable coefficient KdV equation are derived.
基金Supported by the NSF of Henan Province(112300410109)Supported by the NSF of the Education Department(2010A110022)
文摘New type of variable-coefficient KP equation with self-consistent sources and its Grammian solutions are obtained by using the source generation procedure.
基金Supported by Shandong Provincial Natural Science Foundation(Grant Nos.ZR2021MA003 and ZR2020MA020).
文摘This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the behavior of the coefficients when time variable tends to positive infinity.Moreover,the global existence of solutions are discussed for non-positive exponents.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10735030, 10547124, 90503006 and 40305009)the National Basic Research Program of China (Grant Nos 2007CB814800 and 2005CB422301)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20070248120)Program for Changjiang Scholars and Innovative Research Team in University (Grant No IRT0734)the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, Chinathe Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No NCET-05-0591)
文摘Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrǒdinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane by means of the multi-scale expansion method in two different ways, with and without the so-called y-average trick. The non-auto-Bǎcklund transformations are found to transform the derived variable coefficient equations to the corresponding standard KdV, mKdV and NLS equations. Thus, many possible exact solutions can be obtained by taking advantage of the known solutions of these standard equations. Further, many approximate solutions of the original model are ready to be yielded which might be applied to explain some real atmospheric phenomena, such as atmospheric blocking episodes.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10675065)the Scientific Research Fundof the Education Department of Zhejiang Province of China (Grant No. 20070979)
文摘The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.
基金Supported by the NNSF of china(11171298)SuppoSed by the Natural Science Foundation of Zhejiang Province(Y6110425,Y604563)
文摘By means of the method of solid angle coefficients and the permutation formula on the building domain of complex biballs,direct solutions of some singular integral equations with variable coefficients are discussed and the explicit formulas for these solutions are obtained.