Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
Pre-heat treatment is a vital step before cold ring rolling and it has significant effect on the microstructure and mechanical properties of rolled rings.The 100Cr6 steel rings were subjected to pre-heat treatment and...Pre-heat treatment is a vital step before cold ring rolling and it has significant effect on the microstructure and mechanical properties of rolled rings.The 100Cr6 steel rings were subjected to pre-heat treatment and subsequent cold rolling process.Scanning electron microscopy and tensile tests were applied to investigate microstructure characteristic and mechanical property variations of 100Cr6 steel rings undergoing different pre-heat treatings.The results indicate that the average diameter of carbide particles,the tensile strength and hardness increase,while the elongation decreases with the decrease of cooling rate.The cooling rate has minor effect on the yield strength of sample.After cold ring rolling,the ferrite matrix shows a clear direction along the rolling direction.The distribution of cementite is more homogeneous and the cementite particles are finer.Meanwhile,the hardness of the rolled ring is higher than that before rolling.展开更多
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo...Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.展开更多
In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the dif...In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.展开更多
In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesse...In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate' and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.展开更多
This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-dom...This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-domain initial-boundary value problem, and the numerical results are obtained: (1) Thedistribution of temperature rises, the ablation amount and velocity of the thermal shield vary with the time; (2) The maximum ablating velocity, the time of the ablation beginning and ending related to thetranspiration quantity. This method succeeds in overcoming the difficulty brought up by variable domain.On the other hand, the critical transpiration quantity for the surface to start ablating, the maximum ablating velocity and time of the ablation ending are obtained theoretically.展开更多
In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold st...In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.展开更多
In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to...In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to industrial production.Cooling mechanism of UFC and LC was introduced first,and then the control system and control models were described.By using UFC and LC,low-cost Q345B strips had been produced in a large scale,and industrial trials of producing low-cost dual phase strips were completed successfully.Application results show that the ultra fast cooling is uniform along the strip width and length,and does not affect the flatness of strips.The run-out table cooling system runs stably with a high precision,and makes it possible for the user to develop more high quality steels with low costs.展开更多
A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relations...A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers.Model parameters were validated by measured data.Heat transfer models including air convection model,heat radiation model and water cooling capacity model were detailedly introduced.In addition,effects on cooling capacity by water temperature and different valve patterns were also presented.Finally,the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm.Since online application of the sophisticated CTC process control system based on these models,run-out table cooling control system has been running stably and reliably to produce resource-saving,low-cost steels with smaller grain size.展开更多
Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. ...Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency bandwidth of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result.展开更多
A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP...A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
热连轧过程中的加热炉系统具有大惯性和大滞后的特点。为了提高加热炉的温度控制性能,提出了一种基于信息物理系统(cyber-physical system,CPS)的综合优化控制策略。首先,建立了具有延时的传统比例积分微分(proportional integral diffe...热连轧过程中的加热炉系统具有大惯性和大滞后的特点。为了提高加热炉的温度控制性能,提出了一种基于信息物理系统(cyber-physical system,CPS)的综合优化控制策略。首先,建立了具有延时的传统比例积分微分(proportional integral differential,PID)温度控制系统模型。然后,通过引入一个转移参数来构造修正后的状态方程,进而计算出中立型延时系统的控制器参数,并提出了基于CPS的延时优化控制与PID控制相结合的控制策略。最后,将所提控制策略应用在某钢铁厂的步进加热炉中,实验结果表明,该控制策略提升了温度控制的智能化程度,实现了更精确的加热过程,优化了生产流程,提高了加热效率,减少了能源浪费。该控制策略具有工程实用价值和推广意义。展开更多
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
基金Project(2011CB706605)supported by the National Basic Research Program of ChinaProject(2011CDA12)supported by the Innovative Research Groups of the Natural Science Foundation of Hubei Province,ChinaProjects(2012-Ia-017,2013-IV-014)supported by the Fundamental Research Funds for the Central Universities,China
文摘Pre-heat treatment is a vital step before cold ring rolling and it has significant effect on the microstructure and mechanical properties of rolled rings.The 100Cr6 steel rings were subjected to pre-heat treatment and subsequent cold rolling process.Scanning electron microscopy and tensile tests were applied to investigate microstructure characteristic and mechanical property variations of 100Cr6 steel rings undergoing different pre-heat treatings.The results indicate that the average diameter of carbide particles,the tensile strength and hardness increase,while the elongation decreases with the decrease of cooling rate.The cooling rate has minor effect on the yield strength of sample.After cold ring rolling,the ferrite matrix shows a clear direction along the rolling direction.The distribution of cementite is more homogeneous and the cementite particles are finer.Meanwhile,the hardness of the rolled ring is higher than that before rolling.
文摘Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.
基金Project(2018CXNL08) supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.
基金Projects(2012CB619505,2010CB731703)supported by the National Basic Research Program of ChinaProject(CX2013B065)supported by Hunan Provincial Innovation Foundation for Postgraduate,China+1 种基金Project(51405520)supported by the National Natural Science Foundation of ChinaProject(zzyjkt2013-06B)supported by the State Key Laboratory of High Performance Complex Manufacturing(Central South University),China
文摘In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate' and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.
文摘This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-domain initial-boundary value problem, and the numerical results are obtained: (1) Thedistribution of temperature rises, the ablation amount and velocity of the thermal shield vary with the time; (2) The maximum ablating velocity, the time of the ablation beginning and ending related to thetranspiration quantity. This method succeeds in overcoming the difficulty brought up by variable domain.On the other hand, the critical transpiration quantity for the surface to start ablating, the maximum ablating velocity and time of the ablation ending are obtained theoretically.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,ChinaProject(N140704001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.
基金Project(50634030) supported by the National Natural Science Foundation of China
文摘In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to industrial production.Cooling mechanism of UFC and LC was introduced first,and then the control system and control models were described.By using UFC and LC,low-cost Q345B strips had been produced in a large scale,and industrial trials of producing low-cost dual phase strips were completed successfully.Application results show that the ultra fast cooling is uniform along the strip width and length,and does not affect the flatness of strips.The run-out table cooling system runs stably with a high precision,and makes it possible for the user to develop more high quality steels with low costs.
基金Project(51034009)supported by the National Natural Science Foundation of China
文摘A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers.Model parameters were validated by measured data.Heat transfer models including air convection model,heat radiation model and water cooling capacity model were detailedly introduced.In addition,effects on cooling capacity by water temperature and different valve patterns were also presented.Finally,the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm.Since online application of the sophisticated CTC process control system based on these models,run-out table cooling control system has been running stably and reliably to produce resource-saving,low-cost steels with smaller grain size.
文摘Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency bandwidth of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result.
基金Foundation item: Project(2009AA04Z143) supported by the National High Technology Research and Development Program of ChinaProject (E2011203004) supported by Natural Science Foundation of Hebei Province, ChinaProjects(2011BAF15B03, 2011BAF15B02) supported by the National Science Plan of China
文摘A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘热连轧过程中的加热炉系统具有大惯性和大滞后的特点。为了提高加热炉的温度控制性能,提出了一种基于信息物理系统(cyber-physical system,CPS)的综合优化控制策略。首先,建立了具有延时的传统比例积分微分(proportional integral differential,PID)温度控制系统模型。然后,通过引入一个转移参数来构造修正后的状态方程,进而计算出中立型延时系统的控制器参数,并提出了基于CPS的延时优化控制与PID控制相结合的控制策略。最后,将所提控制策略应用在某钢铁厂的步进加热炉中,实验结果表明,该控制策略提升了温度控制的智能化程度,实现了更精确的加热过程,优化了生产流程,提高了加热效率,减少了能源浪费。该控制策略具有工程实用价值和推广意义。