Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the a...Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects.展开更多
Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing mis...Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method.展开更多
Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet...Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.展开更多
强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的...强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的基础上,本文提出一种基于站间传递函数的CSEM有效信号提取方法.首先,从多域对同步观测的CSEM数据进行质量评价,优选出高信噪比的参考站;其次,基于参考站与测站之间的时域信号方差比(Ratio of variance,ROV)实现测站强干扰噪声的快速识别与定位,采用密度聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)筛选出测站高信噪比数据段,并构建频率域站间传递函数;最后,考虑各道之间的相关性,利用参考站信号与站间传递函数对受强干扰时间段的观测数据进行处理,从而实现了强干扰环境下CSEM有效信号的高精度提取.通过对仿真信号与广域电磁法(Wide Field Electromagnetic Method,WFEM)实测数据的处理,验证了方法的有效性和实用性.结果表明,本文提出的基于站间传递函数的CSEM信噪分离方法不仅考虑了多道同步观测数据之间的相关性,还能在不增加野外工作量的基础上实现对有效信号的高精度提取,方法具有普适性,为CSEM同步阵列数据处理提供了一种快速、可行的解决方案.展开更多
文摘Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects.
基金supported by the National Natural Science Foundation of China(11172322)
文摘Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method.
基金Supported by National Natural Science Foundation of P. R. China (60404003)the Natural Science Foundation of Hunan Province (03JJY3108)Fok Ying-Tong Education Foundation (94028)
文摘Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.
文摘强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的基础上,本文提出一种基于站间传递函数的CSEM有效信号提取方法.首先,从多域对同步观测的CSEM数据进行质量评价,优选出高信噪比的参考站;其次,基于参考站与测站之间的时域信号方差比(Ratio of variance,ROV)实现测站强干扰噪声的快速识别与定位,采用密度聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)筛选出测站高信噪比数据段,并构建频率域站间传递函数;最后,考虑各道之间的相关性,利用参考站信号与站间传递函数对受强干扰时间段的观测数据进行处理,从而实现了强干扰环境下CSEM有效信号的高精度提取.通过对仿真信号与广域电磁法(Wide Field Electromagnetic Method,WFEM)实测数据的处理,验证了方法的有效性和实用性.结果表明,本文提出的基于站间传递函数的CSEM信噪分离方法不仅考虑了多道同步观测数据之间的相关性,还能在不增加野外工作量的基础上实现对有效信号的高精度提取,方法具有普适性,为CSEM同步阵列数据处理提供了一种快速、可行的解决方案.