This paper focuses on the continuity of the truncated Hardy-Littlewood maximal function.We first show that the truncated Hardy-Littlewood maximal function is lower semi-continuous.Then by investigating the behavior of...This paper focuses on the continuity of the truncated Hardy-Littlewood maximal function.We first show that the truncated Hardy-Littlewood maximal function is lower semi-continuous.Then by investigating the behavior of the truncated Hardy-Littlewood maximal function when the truncated parameterγchanges,we obtain an equivalent condition of the continuity of the truncated Hardy-Littlewood maximal function.展开更多
Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roastin...Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.展开更多
For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial...For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.展开更多
The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aq...The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.展开更多
High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pos...High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments.展开更多
Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the phy...Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB.展开更多
In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation eval...In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better.展开更多
To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly...To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly ash,due to which most As volatilized and Sb retained in roasted residues in phases of As-Sb-Pb-O and As-Sb-Pb alloy.With the increase of PbO and reductant amounts,the Sb fixation rate increased in the first reduction stage,and further the Sb content in the elemental As obtained from the second reduction stage decreased.After being roasted for 30 min at 550℃ with the addition of 20%activated carbon and 12%PbO in the first reduction stage,the As volatilization rate and Sb fixation rate from the As-Sb fly ash reached 92.86%and 79.38%,respectively.Then through the second reduction of the volatile matters at 650℃,the As and Sb contents in the obtained elemental As reached 99.07 wt%and 0.22 wt%respectively,indicating that the obtained As could be used to prepare high purity As,thereby rendering the As-Sb fly ash recycling.展开更多
Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular ...Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular activated carbon under continuous flow condition.It was indicated that the CMAGR system was operated at the conditions of influent COD of 2000~6000mg / L , hydraulic retention time ( HRT ) of 6hand temperature of 35 ℃ , when the pH value and oxidation-reduction potential ( ORP ) ranged from 4.16and-434 mV respectively , stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.3%to the total liquid products after 40days operation.The H 2 content in biogas and chemical oxygen demand ( COD ) removal were estimated to be 46.6% and 13% , respectively.It was also investigated that the effects of organic loading rates ( OLRs ) on CMAGR hydrogen production system.It was found that hydrogen production yield increased from 3.72 mmol / hL to 12.51 mmol / hL as OLRs increased from 8 kg / m 3 d to 32 kg / m 3 d.The maximum hydrogen production rate of 12.51mmol / hL at a OLR of 32kg / m 3 d and the maximum hydrogen yield by substrate consumed was 130.57 mmol / mol happened at OLR of 16 kg / m 3 d.Greater pHs appeared to be favour to butyrate production and the maximum of 0.51mol / mol was obtained at pH of 4.14.However , ethanol / acetate ratio was greater than 1.1at pH fluctuated between 3.4 - 3.6and 4.1 - 4.4which indicated that these pHs were favour to ethanol type fermentation.Therefore , the continuous mixed attached growth reactor ( CMAGR ) could be a promising attached growth system for biohydrogen fermentation.展开更多
During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to impr...During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.展开更多
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio...An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.展开更多
For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we pro...For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we proposed an automatic method for the segmentation of three intraretinal layers in eye OCT scans centered on ONH.The internal limiting membrane,inner segment and outer segment,Bruch’s membrane surfaces under vascular shadows,and interaction of multiple high-reflectivity regions in the OCT image can be accurately segmented through this method.Then,we constructed a novel spatial-gradient continuity constraint,termed spatial-gradient continuity constraint,for the correction of discontinuity between adjacent image segmentation results.In our experiment,we randomly selected 20 B-scans,each annotated three retinal layers by experts.Signed distance errors of?0.80μm obtained through this method are lower than those obtained through the state-of-art method(?1.43μm).Meanwhile,the segmentation results can be used as bases for the diagnosis of glaucoma.展开更多
For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the ...For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.展开更多
Fetal and Maternal Atomic Bomb Survivor Dosimetry Using the J45 Pregnant Female Phantom Series:Considerations of the Kneeling and Lying Posture with Comparisons to the DS02 System Sean J.Domal1,Camilo M.Correa-Alfonso...Fetal and Maternal Atomic Bomb Survivor Dosimetry Using the J45 Pregnant Female Phantom Series:Considerations of the Kneeling and Lying Posture with Comparisons to the DS02 System Sean J.Domal1,Camilo M.Correa-Alfonso1,Colin J.Paulbeck2,Keith T.Griffin3,4,Tatsuhiko Sato5,Sachiyo Funamoto6,Harry M.Cullings6,Stephen D.Egbert7,Akira Endo8,Nolan E.Hertel4,Choonsik Lee3,Wesley E.Bolch9(1.Medical Physics Program,College of Medicine,University of Florida,Gainesville,FL;2.Department of Radiology,Johns Hopkins University,Baltimore,MD;3.National Cancer Institute,National Institutes of Health,Rockville,MD;4.George W.Woodruff School of Mechanical Eng.,Georgia Institute of Technology,Atlanta,GA;5.Nuclear Science and Engineering Center,Japan Atomic Energy Agency,Tokaimura,Japan;6.Department of Statistics,Radiation Effects Research Foundation,Hiroshima,Japan;7.Consultant,San Diego,CA;8.Nuclear Science Research Institute,Japan Atomic Energy Agency,Tokaimura,Japan;9.J.Crayton Pruitt Family Department of Biomedical Eng.,University of Florida,Gainesville,FL USA)Abstract:Organ dosimetry data of the atomic bomb survivors and the resulting cancer risk models derived from these data are currently assessed within the DS02 dosimetry system developed through the Joint US-Japan Dosimetry Working Group.In DS02,the anatomical survivor models are limited to three hermaphroditic stylized phantoms—an adult(55 kg),a child(19.8 kg),and an infant(9.7 kg)—that were originally designed for the preceding DS86 dosimetry system.As such,organ doses needed for assessment of in-utero cancer risks to the fetus have continued to rely upon the use of the uterine wall in the adult non-pregnant stylized phantom as the dose surrogate for all fetal organs regardless of gestational age.展开更多
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco...In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.展开更多
In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,trunca...In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.展开更多
基金Supported by NSF of Zhejiang Province of China(LQ18A010002,LQ17A010002)。
文摘This paper focuses on the continuity of the truncated Hardy-Littlewood maximal function.We first show that the truncated Hardy-Littlewood maximal function is lower semi-continuous.Then by investigating the behavior of the truncated Hardy-Littlewood maximal function when the truncated parameterγchanges,we obtain an equivalent condition of the continuity of the truncated Hardy-Littlewood maximal function.
基金Project(52174384)supported by the National Natural Science Foundation of ChinaProject(LZB2021003)supported by Fundamental Research Funds for the Central Universities,China。
文摘Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.
基金Supported by Projects from Chongqing Municipal Science and Technology Commission(CSTB2022NSCQ-MSX0445)。
文摘For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.
基金financially supported by the Strategic Environmental Research and Development Program(Grant No.ER19-1075)。
文摘The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.
基金supported by Fund of the National Natural Science Foundation of China (Grant No. 52375553)。
文摘High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments.
基金supported by the National Natural Science Foundation of China under Grant 62301051.
文摘Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB.
基金supported by the Natural Science Basic Research Program of Shaanxi(Program No.2022JQ-593)。
文摘In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better.
基金Project(51874153) supported by the National Natural Science Foundation of ChinaProject(LZB2021003) supported by Fundamental Research Funds for the Central UniversitiesDHU Distinguished Young Professor Program,China。
文摘To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly ash,due to which most As volatilized and Sb retained in roasted residues in phases of As-Sb-Pb-O and As-Sb-Pb alloy.With the increase of PbO and reductant amounts,the Sb fixation rate increased in the first reduction stage,and further the Sb content in the elemental As obtained from the second reduction stage decreased.After being roasted for 30 min at 550℃ with the addition of 20%activated carbon and 12%PbO in the first reduction stage,the As volatilization rate and Sb fixation rate from the As-Sb fly ash reached 92.86%and 79.38%,respectively.Then through the second reduction of the volatile matters at 650℃,the As and Sb contents in the obtained elemental As reached 99.07 wt%and 0.22 wt%respectively,indicating that the obtained As could be used to prepare high purity As,thereby rendering the As-Sb fly ash recycling.
基金support from the National Hi-Tech R&D Program(863 Program)Ministry of Science & Technology,China(2006AA05Z109)+2 种基金Shanghai Science and Technology Bureau(071605122)Shanghai Education Committee(07ZZ156)GRAP09,Northeast Forestry University are gratefully acknowledged
文摘Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular activated carbon under continuous flow condition.It was indicated that the CMAGR system was operated at the conditions of influent COD of 2000~6000mg / L , hydraulic retention time ( HRT ) of 6hand temperature of 35 ℃ , when the pH value and oxidation-reduction potential ( ORP ) ranged from 4.16and-434 mV respectively , stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.3%to the total liquid products after 40days operation.The H 2 content in biogas and chemical oxygen demand ( COD ) removal were estimated to be 46.6% and 13% , respectively.It was also investigated that the effects of organic loading rates ( OLRs ) on CMAGR hydrogen production system.It was found that hydrogen production yield increased from 3.72 mmol / hL to 12.51 mmol / hL as OLRs increased from 8 kg / m 3 d to 32 kg / m 3 d.The maximum hydrogen production rate of 12.51mmol / hL at a OLR of 32kg / m 3 d and the maximum hydrogen yield by substrate consumed was 130.57 mmol / mol happened at OLR of 16 kg / m 3 d.Greater pHs appeared to be favour to butyrate production and the maximum of 0.51mol / mol was obtained at pH of 4.14.However , ethanol / acetate ratio was greater than 1.1at pH fluctuated between 3.4 - 3.6and 4.1 - 4.4which indicated that these pHs were favour to ethanol type fermentation.Therefore , the continuous mixed attached growth reactor ( CMAGR ) could be a promising attached growth system for biohydrogen fermentation.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsProject(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.
文摘An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.
基金Projects(61672542,61573380)supported by the National Natural Science Foundation of China
文摘For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we proposed an automatic method for the segmentation of three intraretinal layers in eye OCT scans centered on ONH.The internal limiting membrane,inner segment and outer segment,Bruch’s membrane surfaces under vascular shadows,and interaction of multiple high-reflectivity regions in the OCT image can be accurately segmented through this method.Then,we constructed a novel spatial-gradient continuity constraint,termed spatial-gradient continuity constraint,for the correction of discontinuity between adjacent image segmentation results.In our experiment,we randomly selected 20 B-scans,each annotated three retinal layers by experts.Signed distance errors of?0.80μm obtained through this method are lower than those obtained through the state-of-art method(?1.43μm).Meanwhile,the segmentation results can be used as bases for the diagnosis of glaucoma.
基金supported by the National Natural Science Foundation of China(61640006)the Natural Science Foundation of Shannxi Province,China(2019JM-386).
文摘For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.
文摘Fetal and Maternal Atomic Bomb Survivor Dosimetry Using the J45 Pregnant Female Phantom Series:Considerations of the Kneeling and Lying Posture with Comparisons to the DS02 System Sean J.Domal1,Camilo M.Correa-Alfonso1,Colin J.Paulbeck2,Keith T.Griffin3,4,Tatsuhiko Sato5,Sachiyo Funamoto6,Harry M.Cullings6,Stephen D.Egbert7,Akira Endo8,Nolan E.Hertel4,Choonsik Lee3,Wesley E.Bolch9(1.Medical Physics Program,College of Medicine,University of Florida,Gainesville,FL;2.Department of Radiology,Johns Hopkins University,Baltimore,MD;3.National Cancer Institute,National Institutes of Health,Rockville,MD;4.George W.Woodruff School of Mechanical Eng.,Georgia Institute of Technology,Atlanta,GA;5.Nuclear Science and Engineering Center,Japan Atomic Energy Agency,Tokaimura,Japan;6.Department of Statistics,Radiation Effects Research Foundation,Hiroshima,Japan;7.Consultant,San Diego,CA;8.Nuclear Science Research Institute,Japan Atomic Energy Agency,Tokaimura,Japan;9.J.Crayton Pruitt Family Department of Biomedical Eng.,University of Florida,Gainesville,FL USA)Abstract:Organ dosimetry data of the atomic bomb survivors and the resulting cancer risk models derived from these data are currently assessed within the DS02 dosimetry system developed through the Joint US-Japan Dosimetry Working Group.In DS02,the anatomical survivor models are limited to three hermaphroditic stylized phantoms—an adult(55 kg),a child(19.8 kg),and an infant(9.7 kg)—that were originally designed for the preceding DS86 dosimetry system.As such,organ doses needed for assessment of in-utero cancer risks to the fetus have continued to rely upon the use of the uterine wall in the adult non-pregnant stylized phantom as the dose surrogate for all fetal organs regardless of gestational age.
基金National Key R&D Program of China(Grant No.2021YFA1000402)National Natural Science Foundation of China(Grant No.72071159)to provide fund for conducting experiments。
文摘In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.
基金Supported by the National Natural Science Foundation of China(11926322)the Fundamental Research Funds for the Central Universities of South-Central MinZu University(CZY22013,3212023sycxjj001)。
文摘In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.