期刊文献+
共找到1,319篇文章
< 1 2 66 >
每页显示 20 50 100
Efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers 被引量:1
1
作者 LIU Sixing PEI Changbao +3 位作者 YE Xiaodong WANG Hao WU Fan TAO Shifei 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1388-1396,共9页
Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue... Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 multi-objective optimization(MOO) Kriging model microwave metamaterial absorber(MMA) surrogate models sampling strategy
在线阅读 下载PDF
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
2
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
Remarks on a benchmark nonlinear constrained optimization problem 被引量:1
3
作者 Luo Yazhong Lei Yongjun Tang Guojin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期551-553,共3页
Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulat... Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn Tucker conditions. 展开更多
关键词 nonlinear constrained optimization parallel simulated annealing Kuhn-Tucker theorem.
在线阅读 下载PDF
Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization 被引量:1
4
作者 GAO Wei-Shang SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2014年第11期2469-2479,共11页
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg... Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions. 展开更多
关键词 constrained optimization evolutionary algorithm MULTI-AGENTS swarm intelligence
在线阅读 下载PDF
Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm 被引量:32
5
作者 WANG Jian-feng JIA Gao-wei +1 位作者 LIN Jun-can HOU Zhong-xi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期432-448,共17页
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo... The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments. 展开更多
关键词 unmanned aerial vehicles cooperative task allocation HETEROGENEOUS constrainT multi-objective optimization solution evaluation method
在线阅读 下载PDF
A decision support system for satellite layout integrating multi-objective optimization and multi-attribute decision making 被引量:3
6
作者 LIANG Yan’gang QIN Zheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期535-544,共10页
A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the... A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform. 展开更多
关键词 layout optimization SATELLITE multi-objective optimization PARETO FRONT MULTI-ATTRIBUTE decision making
在线阅读 下载PDF
Overview of multi-objective optimization methods 被引量:2
7
作者 LeiXiujuan ShiZhongke 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第2期142-146,共5页
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab... To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper. 展开更多
关键词 multi-objective optimization objective function Pareto optimality genetic algorithms simulated annealing fuzzy logical.
在线阅读 下载PDF
Simulation-based multi-objective optimization for roll shifting strategy in hot strip mill 被引量:2
8
作者 李维刚 《Journal of Central South University》 SCIE EI CAS 2013年第5期1226-1234,共9页
A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulat... A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km. 展开更多
关键词 hot rolling roll shifting strategy roll wear multi-objective optimization Pareto-optimal front
在线阅读 下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
9
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
An integer multi-objective optimization model and an enhanced non-dominated sorting genetic algorithm for contraflow scheduling problem
10
作者 李沛恒 楼颖燕 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2399-2405,共7页
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor... To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity. 展开更多
关键词 hurricane evacuation contraflow scheduling multi-objective optimization NSGA-II
在线阅读 下载PDF
Multi-objective optimization of top-level arrangement for flight test
11
作者 WANG Yunong BI Wenhao +2 位作者 FAN Qiucen XU Shuangfei ZHANG An 《Journal of Systems Engineering and Electronics》 2025年第3期714-724,共11页
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig... The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test. 展开更多
关键词 flight test top-level arrangement flight test optimization multi-objective optimization
在线阅读 下载PDF
Multi-objective optimization framework in the modeling of belief rule-based systems with interpretability-accuracy trade-off
12
作者 YOU Yaqian SUN Jianbin +1 位作者 TAN Yuejin JIANG Jiang 《Journal of Systems Engineering and Electronics》 2025年第2期423-435,共13页
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b... The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off. 展开更多
关键词 belief rule-based(BRB)systems INTERPRETABILITY multi-objective optimization nondominated sorting genetic algo-rithm II(NSGA-II) pipeline leakage detection.
在线阅读 下载PDF
Optimization of mesh characteristics of gear pair considering influence of assembly errors
13
作者 ZHAO Xiao-jian MA Hui +5 位作者 MA Ze-yu LIU Jia-qi CAO Peng WU Yu-ping DING Xiang-fu ZHAO Tian-yu 《Journal of Central South University》 2025年第4期1400-1430,共31页
Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional load... Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional loaded tooth contact analysis(3D-LTCA)method which can consider tooth modification and coupling assembly errors is proposed,and mesh stiffness calculated by proposed method is verified by MASTA software.Secondly,based on neural network,the surrogate model(SM)that maps the relationship between modification parameters and mesh mechanical parameters is established,and its accuracy is verified.Finally,SM is introduced to establish an optimization model with the target of minimizing mesh stiffness variations and obtaining more even load distribution on mesh surface.The results show that even considering training time,the efficiency of gear pair optimization by surrogate model is still much higher than that by LTCA method.After optimization,the mesh stiffness fluctuation of gear pair with coupling assembly error is reduced by 34.10%,and difference in average contact stresses between left and right regions of the mesh surface is reduced by 62.84%. 展开更多
关键词 helical gear mesh characteristics gear tooth modification assembly errors neural network multi-objective optimization
在线阅读 下载PDF
A hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimization 被引量:5
14
作者 龙文 张文专 +1 位作者 黄亚飞 陈义雄 《Journal of Central South University》 SCIE EI CAS 2014年第8期3197-3204,共8页
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at... Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm. 展开更多
关键词 constrained optimization problem cuckoo search algorithm pattem search feasibility-based rule engineeringoptimization
在线阅读 下载PDF
Hybridizing artificial bee colony with biogeography-based optimization for constrained mechanical design problems 被引量:2
15
作者 蔡绍洪 龙文 焦建军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2250-2259,共10页
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c... A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches. 展开更多
关键词 artificial bee colony biogeography-based optimization constrained optimization mechanical design problem
在线阅读 下载PDF
A robust multi-objective and multi-physics optimization of multi-physics behavior of microstructure
16
作者 Hamda Chagraoui Mohamed Soula Mohamed Guedri 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3225-3238,共14页
A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust c... A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust collaborative (IMORCO). In this work, the proposed IMORCO approach combined the IMOCO method, the worst possible point (WPP) constraint cuts and the Genetic algorithm NSGA-II type as an optimizer in order to solve the robust optimization problem of multi-physics of microstructures with uncertainties. The optimization problem is hierarchically decomposed into two levels: a microstructure level, and a disciplines levels, For validation purposes, two examples were selected: a numerical example, and an engineering example of capacitive micro machined ultrasonic transducers (CMUT) type. The obtained results are compared with those obtained from robust non-distributed and distributed optimization approach, non-distributed multi-objective robust optimization (NDMORO) and multi-objective collaborative robust optimization (McRO), respectively. Results obtained from the application of the IMOCO approach to an optimization problem of a CMUT cell have reduced the CPU time by 44% ensuring a Pareto front close to the reference non-distributed multi-objective optimization (NDMO) approach (mahalanobis distance, D2M =0.9503 and overall spread, So=0.2309). In addition, the consideration of robustness in IMORCO approach applied to a CMUT cell of optimization problem under interval uncertainty has reduced the CPU time by 23% keeping a robust Pareto front overlaps with that obtained by the robust NDMORO approach (D2M =10.3869 and So=0.0537). 展开更多
关键词 multi-physics multi-objective optimization robust optimization collaborative optimization non-distributed anddistributed optimization uncertainty interval
在线阅读 下载PDF
Multi-objective optimization for leaching process using improved two-stage guide PSO algorithm 被引量:8
17
作者 胡广浩 毛志忠 何大阔 《Journal of Central South University》 SCIE EI CAS 2011年第4期1200-1210,共11页
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ... A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively. 展开更多
关键词 leaching process MODELING multi-objective optimization two-stage guide EXPERIMENT
在线阅读 下载PDF
Multi-objective capacity allocation optimization method of photovoltaic EV charging station considering V2G 被引量:10
18
作者 ZHENG Xue-qin YAO Yi-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期481-493,共13页
Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed... Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency. 展开更多
关键词 vehicle to grid (V2G) capacity configuration optimization time-to-use (TOU) price multi-objective optimization NSGA-Ⅱ algorithm NSGA-SA algorithm
在线阅读 下载PDF
Multi-objective optimization of rolling schedule based on cost function for tandem cold mill 被引量:4
19
作者 陈树宗 张欣 +3 位作者 彭良贵 张殿华 孙杰 刘印忠 《Journal of Central South University》 SCIE EI CAS 2014年第5期1733-1740,共8页
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r... In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae. 展开更多
关键词 tandem cold mill multi-object optimization rolling schedule cost function simplex algorithm
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
20
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle SWARM optimization (PSO) CLOUD computing system
在线阅读 下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部