期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
1
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization 被引量:1
2
作者 GAO Wei-Shang SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2014年第11期2469-2479,共11页
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg... Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions. 展开更多
关键词 constrained optimization evolutionary algorithm MULTI-AGENTS swarm intelligence
在线阅读 下载PDF
Remarks on a benchmark nonlinear constrained optimization problem 被引量:1
3
作者 Luo Yazhong Lei Yongjun Tang Guojin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期551-553,共3页
Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulat... Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn Tucker conditions. 展开更多
关键词 nonlinear constrained optimization parallel simulated annealing Kuhn-Tucker theorem.
在线阅读 下载PDF
A hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimization 被引量:5
4
作者 龙文 张文专 +1 位作者 黄亚飞 陈义雄 《Journal of Central South University》 SCIE EI CAS 2014年第8期3197-3204,共8页
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at... Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm. 展开更多
关键词 constrained optimization problem cuckoo search algorithm pattem search feasibility-based rule engineeringoptimization
在线阅读 下载PDF
Hybridizing artificial bee colony with biogeography-based optimization for constrained mechanical design problems 被引量:2
5
作者 蔡绍洪 龙文 焦建军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2250-2259,共10页
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c... A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches. 展开更多
关键词 artificial bee colony biogeography-based optimization constrained optimization mechanical design problem
在线阅读 下载PDF
Stabilizing model predictive control scheme for piecewise affine systems with maximal positively invariant terminal set
6
作者 Fu Chen Guangzhou Zhao Xiaoming Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1090-1094,共5页
An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The... An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The maximal positively invariant terminal set, which is feasible and invariant with respect to a feedback control law, is computed as terminal target set and an associated Lyapunov function is chosen as terminal cost. The combination of these two components guarantees constraint satisfaction and closed-loop stability for all time. The proposed algorithm combines a dynamic programming strategy with a multi-parametric quadratic programming solver and basic polyhedral manipulation. A numerical example shows that a larger stabilizable set of states can be obtained by the proposed algorithm than precious work. 展开更多
关键词 constrained optimal predictive control multi-parametric quadratic programming dynamic programming receding horizon control positively invariant set.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部