针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增...针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增益之间的关系,由分析可知,系统工作在非谐振状态下的恒压输出区间内抗偏移能力更强;然后,设计电感补偿序列,提出恒压输出区间追踪控制策略,实现WPT系统输出电压恒定控制,提高系统的抗偏移能力;最后,搭建仿真模型和实验平台,仿真及实验结果均表明,采用恒压输出区间追踪控制策略,可以有效减小输出电压的波动,验证了系统在强互感干扰下的鲁棒性。相较于无恒压输出区间追踪的WPT系统,所提系统具有更好的输出电压动态调节能力。展开更多
针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,...针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。展开更多
文摘针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增益之间的关系,由分析可知,系统工作在非谐振状态下的恒压输出区间内抗偏移能力更强;然后,设计电感补偿序列,提出恒压输出区间追踪控制策略,实现WPT系统输出电压恒定控制,提高系统的抗偏移能力;最后,搭建仿真模型和实验平台,仿真及实验结果均表明,采用恒压输出区间追踪控制策略,可以有效减小输出电压的波动,验证了系统在强互感干扰下的鲁棒性。相较于无恒压输出区间追踪的WPT系统,所提系统具有更好的输出电压动态调节能力。
文摘针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。
文摘基于热耗变换系数法分析了定功率条件下某300 MW太阳能辅助燃煤发电系统的热经济性。结果表明,代替某一级抽汽时,机组煤耗率的降低量与太阳能提供外热量的比值与该级抽汽热耗变换系数线性相关;相同热量代替#1抽汽相对代替#8抽汽,煤耗率降低量可提高82%,随着代替抽汽品质的下降,油–水换热器的传热面积提高了35%,而效率由95%降低到69%,单位面积的?收益由4.3 k W/m2下降到0.6 kW/m2,集热器的面积与造价在代替前6段抽汽(除氧器除外)时上升,在代替最末两级抽汽时降低,在代替第6段抽汽时达到最大值。单位煤耗率降低量所需的集热造价呈先上升后下降再上升的趋势,代替#1抽汽时最低。