A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with ...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.展开更多
Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmissio...Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmission delay and packet loss.It compensates for transmission delay and packet loss firstly,and then,estimates clock skew and clock offset in two steps.Simulation and experiment results show that the proposed protocol can keep synchronization error below 2μs in the grid network of 10 nodes or the random network of 90 nodes.Moreover,the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.展开更多
The new method which uses the consensus algorithm to solve the coordinate control problems of multiple unmanned underwater vehicles (multi-UUVs) formation in the case of leader-following is adapted. As the communica...The new method which uses the consensus algorithm to solve the coordinate control problems of multiple unmanned underwater vehicles (multi-UUVs) formation in the case of leader-following is adapted. As the communication between the UUVs is difficult and it is easy to be interfered under the water, time delay is assumed to be time-varying during the members communicate with each other. Meanwhile, the state feedback linearization method is used to transfer the nonlinear and coupling model of UUV into double-integrator dynamic. With this simplified double-integrator math model, the UUV formation coordinate control is regarded as consensus problem with time-varying communication delays. In addition, the position and velocity topologies are adapted to reduce the data volume in each data packet which is sent between members in formation. With two independent topologies designed, two cases of communication delay which are same and different are considered and the sufficient conditions are proposed and analyzed. The stability of the multi-UUVs formation is proven by using Lyapunov-Razumilkhin theorem. Finally, the simulation results are presented to confirm and illustrate the theoretical results.展开更多
An efficient design method is proposed for the cooperative control problem of morphing wing systems with distributed structures and bounded control inputs. The multi-agent model of the distributed morphing wing system...An efficient design method is proposed for the cooperative control problem of morphing wing systems with distributed structures and bounded control inputs. The multi-agent model of the distributed morphing wing system is established. The cooperative controllers with saturation constraints are presented. By introducing the concepts in consensus algorithms, the cooperative information links in the controllers are described by graphs, and the corresponding Laplacian matrix is defined. The design conditions of the cooperative controllers are proposed, in the form of linear matrix inequalities. For the case of undirected information links, the controller design conditions are simplified as algebraic inequalities, which highly reduce the computation cost. The designed controllers are implemented on a distributed morphing wing platform, and experiments are carried out. Simulation and experiment results show that the controllers can make all the actuating units in the morphing wing system cooperatively achieve the desired positions, which demonstrates the effectiveness of the proposed theory.展开更多
基金supported by the National Natural Sciences Foundation of China (60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.
文摘Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmission delay and packet loss.It compensates for transmission delay and packet loss firstly,and then,estimates clock skew and clock offset in two steps.Simulation and experiment results show that the proposed protocol can keep synchronization error below 2μs in the grid network of 10 nodes or the random network of 90 nodes.Moreover,the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.
基金Projects(51309067,51679057,51609048)supported by the National Natural Science Foundation of ChinaProject(JC2016007)supported by the Outstanding Youth Science Foundation of Heilongjiang Province,ChinaProject(HEUCFX041401)supported by the Fundamental Research Funds for the Central Universities,China
文摘The new method which uses the consensus algorithm to solve the coordinate control problems of multiple unmanned underwater vehicles (multi-UUVs) formation in the case of leader-following is adapted. As the communication between the UUVs is difficult and it is easy to be interfered under the water, time delay is assumed to be time-varying during the members communicate with each other. Meanwhile, the state feedback linearization method is used to transfer the nonlinear and coupling model of UUV into double-integrator dynamic. With this simplified double-integrator math model, the UUV formation coordinate control is regarded as consensus problem with time-varying communication delays. In addition, the position and velocity topologies are adapted to reduce the data volume in each data packet which is sent between members in formation. With two independent topologies designed, two cases of communication delay which are same and different are considered and the sufficient conditions are proposed and analyzed. The stability of the multi-UUVs formation is proven by using Lyapunov-Razumilkhin theorem. Finally, the simulation results are presented to confirm and illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China (90605007 91016017)
文摘An efficient design method is proposed for the cooperative control problem of morphing wing systems with distributed structures and bounded control inputs. The multi-agent model of the distributed morphing wing system is established. The cooperative controllers with saturation constraints are presented. By introducing the concepts in consensus algorithms, the cooperative information links in the controllers are described by graphs, and the corresponding Laplacian matrix is defined. The design conditions of the cooperative controllers are proposed, in the form of linear matrix inequalities. For the case of undirected information links, the controller design conditions are simplified as algebraic inequalities, which highly reduce the computation cost. The designed controllers are implemented on a distributed morphing wing platform, and experiments are carried out. Simulation and experiment results show that the controllers can make all the actuating units in the morphing wing system cooperatively achieve the desired positions, which demonstrates the effectiveness of the proposed theory.