期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Lead spall velocity of fragments of ultra-high-performance concrete slabs under partially embedded cylindrical charge-induced explosion 被引量:1
1
作者 Yi Fan Li Chen +2 位作者 Heng-bo Xiang Qin Fang Fang-yu Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期50-59,共10页
When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to n... When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to nearby personnel and equipment. To study the lead fragment velocity of ultra-high-performance concrete(UHPC), partially embedded explosion experiments were performed on UHPC slabs of limited thickness using a cylindrical trinitrotoluene charge. The launch angles and velocities of the resulting fragments were the determined using images collected by high-speed camera to document the concrete spalling and fragment launching process. The results showed that UHPC slabs without fiber reinforcement had a fragment velocity distribution of 0-118.3 m/s, which are largely identical to that for a normal-strength concrete(NSC) slab. In addition, the fragment velocity was negatively correlated to the angle between the velocity vector and vertical direction. An empirical Eq. for the lead spall velocity of UHPC and NSC slabs was then proposed based on a large volume of existing experimental data. 展开更多
关键词 Ultra-high-performance concrete Reinforced concrete slabs Explosion Fragment velocity Blast resistance
在线阅读 下载PDF
Experimental investigation of ultra-early-strength cement-based selfcompacting high strength concrete slabs(URCS)under contact explosions 被引量:1
2
作者 Wei Wang Qing Huo +2 位作者 Jian-chao Yang Jian-hui Wang Xing Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期326-339,共14页
In this paper,UR50 ultra-early-strength cement-based self-compacting high-strength concrete slabs(URCS)have been subjected to contact explosion tests with different TNT charge quality,aiming to evaluate the anti-explo... In this paper,UR50 ultra-early-strength cement-based self-compacting high-strength concrete slabs(URCS)have been subjected to contact explosion tests with different TNT charge quality,aiming to evaluate the anti-explosive performance of URCS.In the experiment,three kinds of ultra-early-strength cement-based reinforced concrete slabs with different reinforcement ratios and a normal concrete slab(NRCS)were used as the control specimen,the curing time of URCS is 28 days and 24 h respectively.The research results show that URCS has a stronger anti-explosion ability than NRCS.The failure mode of URCS under contact explosion is that the front of the reinforced concrete slab explodes into a crater,and the back is spall.With the increase of the charge,the failure mode of the reinforced concrete slab gradually changed to explosive penetration and explosive punching.The experiment results also show that the reinforcement ratio of URCS has little effect on the anti-blast performance,and URCS can reach its anti-blast performance at 28 days after curing for 24 h.On this basis,the damage parameters of URCS for different curing durations were quantified,and an empirical formula for predicting the diameter of the crater and spalling was established. 展开更多
关键词 Ultra-early-strength concrete slabs Blast load Contact blast Blast-resistant performance
在线阅读 下载PDF
Damage analysis of POZD coated square reinforced concrete slab under contact blast 被引量:6
3
作者 Wei Wang Qing Huo +3 位作者 Jian-chao Yang Jian-hui Wang Xing Wang Wei-liang Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1715-1726,共12页
High efficiency, environmental protection and sustainability have become the main theme of the development of the protection engineering, requiring that the components not only meet the basic functions, but also have ... High efficiency, environmental protection and sustainability have become the main theme of the development of the protection engineering, requiring that the components not only meet the basic functions, but also have chemical properties such as acid and alkali corrosion resistance and aging resistance. Polyisocyanate-oxazodone(POZD) polymer has the above characteristics, it also has the advantages of strong toughness, high strength and high elongation. The concrete slab sprayed with POZD material has excellent anti-blast performance. In order to explore the damage characteristics of POZD sprayed concrete slabs under the action of contact explosion thoroughly, the contact explosion test of POZD concrete slabs with different charges were carried out. On the basis of experimental verification,numerical simulation were used to study the influence of the thickness of the POZD on the blast resistance of the concrete slab. According to the test and numerical simulation results that as the thickness of the coating increases, the anti-blast performance of the concrete slab gradually increases,and the TNT equivalent required for critical failure is larger. Based on the above analysis, empirical expressions on normalized crater diameter, the normalized spall diameter and normalized spall diameter are obtained. 展开更多
关键词 Contact exposion Square reinforced concrete slab POZD coating Numerical simulation
在线阅读 下载PDF
Experimental investigation of engineered geopolymer composite for structural strengthening against blast loads
4
作者 Shan Liu Chunyuan Liu +3 位作者 Yifei Hao Yi Zhang Li Chen Zhan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期496-509,共14页
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme... The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens. 展开更多
关键词 Engineered geopolymer composites Fiber optimization Strengthening material Blast resistance Masonry wall Reinforced AAC panel Plain concrete slab
在线阅读 下载PDF
Numerical Analysis of Effect of Water on Explosive Wave Propagation in Tunnels and Surrounding Rock 被引量:5
5
作者 XIA Chang-jing SONG Zhen-duo TIAN Lu-lu LIU Hong-bin WANG Lu WU Xiao-fang 《Journal of China University of Mining and Technology》 EI 2007年第3期368-371,共4页
Based on the application of practical engineering,propagation processes of explosive waves in rock with water well and tunnel are simulated by ANSYS/LS-DYNA software. The evolution of damage in rock is presented. The ... Based on the application of practical engineering,propagation processes of explosive waves in rock with water well and tunnel are simulated by ANSYS/LS-DYNA software. The evolution of damage in rock is presented. The effect of water on the damage of the concrete slab in a tunnel is compared with damage inflicted without water. The numerical simulation illustrates that water plays an important role in the evolution of damage of the concrete slab in a mine tunnel. In the presence of water in the rock the concrete slab is damaged more severely than without water in rock. The effect of water location in the rock is also considered. It is found that the concrete slab in the tunnel shows various degrees of damage as a function of the different locations of water. Attenuation laws of stress waves over time-space in rock with water are also obtained. Numerical results indicate that,under blast loading,there are three zones in the rock: a crushed zone nearby the explosive charge,a damaged zone and an elastic zone. The conclusions of numerical analysis may provide references for blasting designs and structure protection. 展开更多
关键词 explosive wave numerical simulation concrete slab damage evolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部