Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage a...Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage and multiple impact damage of C/SiC composites is limited.To investigate the in-plane impact damage behavior of C/SiC composites,a drop-weight impact test method was developed for strip samples,and these results were subsequently compared with those of C/SiC composite plates.Results show that the in-plane impact behavior of C/SiC strip samples is similar to that of C/SiC composite plates.Variation of the impact load with displacement is characterized by three stages:a nearly linear stage,a severe load drop stage,and a rebound stage where displacement occurs after the impact energy exceeds its peak value.Impact damage behavior under single and multiple impacts on 2D plain and 3D needled C/SiC composites was investigated at different impact energies and durations.Crack propagation in C/SiC composites was studied by computerized tomography(CT)technique.In the 2D plain C/SiC composite,load propagation between layers is hindered during impact,leading to delamination and 90°fiber brittle fracture.The crack length perpendicular to the impact direction increases with impact energy increases,resulting in more serious 0°fiber fracture and a larger area of fiber loss.In the 3D needled C/SiC composite,load propagates between the layers during impact through the connection of needled fibers.The fibers continue to provide substantial structural support,with notable instances of fiber pull-off and debonding.Consequently,the impact resistance is superior to that of 2D plain C/SiC composite.When the 3D needled C/SiC composite undergoes two successive impacts of 1.5 J,the energy absorption efficiency of the second impact is significantly lower,accompanied by a smaller impact displacement.Moreover,the total energy absorption efficiency of these two impacts of 1.5 J is lower than that of a single 3.0 J impact.展开更多
The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the ...The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top, middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column. The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.展开更多
G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)...G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM,以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究,结果表明:相比传统的SIE方法,SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率,应用前景较好;SIE方法不适用于饱和的G-DINA等模型,其各实验条件下的Q矩阵标定精度均较低。展开更多
基金Aeronautical Science Foundation of China(2021Z057053001)。
文摘Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage and multiple impact damage of C/SiC composites is limited.To investigate the in-plane impact damage behavior of C/SiC composites,a drop-weight impact test method was developed for strip samples,and these results were subsequently compared with those of C/SiC composite plates.Results show that the in-plane impact behavior of C/SiC strip samples is similar to that of C/SiC composite plates.Variation of the impact load with displacement is characterized by three stages:a nearly linear stage,a severe load drop stage,and a rebound stage where displacement occurs after the impact energy exceeds its peak value.Impact damage behavior under single and multiple impacts on 2D plain and 3D needled C/SiC composites was investigated at different impact energies and durations.Crack propagation in C/SiC composites was studied by computerized tomography(CT)technique.In the 2D plain C/SiC composite,load propagation between layers is hindered during impact,leading to delamination and 90°fiber brittle fracture.The crack length perpendicular to the impact direction increases with impact energy increases,resulting in more serious 0°fiber fracture and a larger area of fiber loss.In the 3D needled C/SiC composite,load propagates between the layers during impact through the connection of needled fibers.The fibers continue to provide substantial structural support,with notable instances of fiber pull-off and debonding.Consequently,the impact resistance is superior to that of 2D plain C/SiC composite.When the 3D needled C/SiC composite undergoes two successive impacts of 1.5 J,the energy absorption efficiency of the second impact is significantly lower,accompanied by a smaller impact displacement.Moreover,the total energy absorption efficiency of these two impacts of 1.5 J is lower than that of a single 3.0 J impact.
基金Project(2004CB619205) supported by the National Key Fundamental Research and Development Program of ChinaProject(50325415) supported by the National Science Fund for Distinguished Young ScholarsProject(50574099) supported by the National Natural Science Foundation of China
文摘The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top, middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column. The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.
文摘G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM,以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究,结果表明:相比传统的SIE方法,SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率,应用前景较好;SIE方法不适用于饱和的G-DINA等模型,其各实验条件下的Q矩阵标定精度均较低。