A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the po...A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the power and refrigeration cycle, respectively. A performance comparison and analysis for the combined system was presented. The results show that dual-pressure ORC-VCRC system can achieve an increase of 7.1% in thermal efficiency and 6.7% in exergy efficiency than that of basic ORC-VCRC. Intermediate pressure is a key parameter to both net power and exergy efficiency of dual-pressure ORC-VCRC system. Combined system can produce maximum net power and exergy efficiency at 0.85 MPa for intermediate pressure and 2.4 MPa for high pressure, respectively. However, superheated temperature at expander inlet has little impact on the two indicators. It can achieve higher overall COP, net power and exergy efficiency at smaller difference between condensation temperature and evaporation temperature of VCRC.展开更多
为降低数据中心制冷系统的能耗,搭建了一种磁力泵驱动的两相冷却复合制冷装置,并对其进行了实验研究。结果表明,室外温度15℃时,泵循环模式的EER随冷凝器迎面风速先增大后减小,当风速为1 m/s时EER获得最大值。在热负荷为7.3 k W条件下,...为降低数据中心制冷系统的能耗,搭建了一种磁力泵驱动的两相冷却复合制冷装置,并对其进行了实验研究。结果表明,室外温度15℃时,泵循环模式的EER随冷凝器迎面风速先增大后减小,当风速为1 m/s时EER获得最大值。在热负荷为7.3 k W条件下,实验获得了两种运行模式的最佳转换温度;最后以哈尔滨和石家庄地区为例,模拟计算出泵驱动模式的全年最佳运行时间比。展开更多
基金Project(12C0379)supported by the Scientific Research Fund of Hunan Province,ChinaProject(13QDZ04)supported by the Scientific Research Foundation for Doctors of Xiangtan University,China
文摘A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the power and refrigeration cycle, respectively. A performance comparison and analysis for the combined system was presented. The results show that dual-pressure ORC-VCRC system can achieve an increase of 7.1% in thermal efficiency and 6.7% in exergy efficiency than that of basic ORC-VCRC. Intermediate pressure is a key parameter to both net power and exergy efficiency of dual-pressure ORC-VCRC system. Combined system can produce maximum net power and exergy efficiency at 0.85 MPa for intermediate pressure and 2.4 MPa for high pressure, respectively. However, superheated temperature at expander inlet has little impact on the two indicators. It can achieve higher overall COP, net power and exergy efficiency at smaller difference between condensation temperature and evaporation temperature of VCRC.
文摘为降低数据中心制冷系统的能耗,搭建了一种磁力泵驱动的两相冷却复合制冷装置,并对其进行了实验研究。结果表明,室外温度15℃时,泵循环模式的EER随冷凝器迎面风速先增大后减小,当风速为1 m/s时EER获得最大值。在热负荷为7.3 k W条件下,实验获得了两种运行模式的最佳转换温度;最后以哈尔滨和石家庄地区为例,模拟计算出泵驱动模式的全年最佳运行时间比。