The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive...The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, T 〈 500℃, 500℃ 〈 T 〈 800℃ and T 〉 800℃. The Rutherford baekscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at T 〈 500℃ and T 〉 800℃ is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500℃ 〈 T 〈 800℃ strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon-nickel films annealed from 300 to 500℃ are increased, while from 500 to 1000℃ these characteristics are decreased. It can be seen that at 800℃, films have maximum values of porosity and roughness.展开更多
This paper reports that single-layer and graded Au-TiO2 granular composite films with Au atom content 15%- 66% were prepared by using reactive co-sputtering technique. The third-order optical nonlinearity of single-la...This paper reports that single-layer and graded Au-TiO2 granular composite films with Au atom content 15%- 66% were prepared by using reactive co-sputtering technique. The third-order optical nonlinearity of single-layer and graded composite films was investigated by using s- and p-polarized Z-scans in femtosecond time scale. The nonlinear absorption coefficient βeff of single-layer Au-TiO2 films is measured to be -2.3×10^3-0.76×10^3 cm/GW with Au atom content 15%-66%. The βeff value of the 10-layer Au-TiO2 graded film is enhanced to be -2.1×10^4cm/GW calculated from p-polarized Z-scans, which is about ten times the maximum βeff of single-layer films. Broadened response in the wavelength region 730-860 nm of the enhanced optical nonlinearity of graded Au-TiO2 composite films was also investigated.展开更多
We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structu...We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structured layers was performed by increasing the deposition temperature of the Al layers to 270℃. The highly submicro-textured silver and aluminum double-structured layers were prepared by thermal evaporation on quartz glasses and their surface microstructure, light scattering properties, and thermal stability were investigated. Results showed that the highly submicro-textured Ag/Al composite films prepared at low substrate temperatures used as back reflectors not only can enhance the light scattering and have good thermal stability, but also have good adhesion properties. In addition, their fabrication is low cost and readily carried out.展开更多
Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-...Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.展开更多
Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are stil...Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are still insufficient for high-barrier packaging applications.In this study,oxygen scavenger hydroxyl-terminated polybutadiene(HTPB)and cobalt salt catalyst were incorporated into the PLA/poly(butylene adipate-co-terephthalate)(PLA/PBAT),followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films.The oxygen permeability coefficient of the composite film combined with 6 wt%oxygen scavenger and 0.4 wt%catalyst was decreased significantly from 377.00 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1) to 0.98 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1),showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film.Meanwhile,the degradation behavior of the composite film was also accelerated,exhibiting a mass loss of nearly 60%of the original mass after seven days of degradation in an alkaline environment,whereas PLA/PBAT composite film only showed a mass loss of 32%.This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior,which has great potential for high-demanding green chemistry packaging industries,including food,agricultural,and military packaging.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the...Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the poor electronic conductivity, the application of layered silicates for electrochemical energy storage has been greatly limited. Carbon nanotube(CNT) film has excellent electrical conductivity and a unique interconnected network, making it an ideal matrix for composite electrochemical material. We herein report a CNT@nickel silicate composite film(CNT@NiSiO) fabricated by a SiO2-mediated hydrothermal conversion process, for sodium storage with excellent electrochemical properties. The obtained composite possesses a cladding structure with homogeneous nanosheets as the outermost and CNT film as the inner network matrix, providing abundant ion diffusion channels, high electronic conductivity, and good mechanical flexibility. Due to these merits, this material possesses an excellent electrochemical performance for sodium storage, including a high specific capacity up to 390 mAh g-1 at 50 mA g-1, good rate performance up to 205 mAh g-1 at 500 mA g-1, and excellent cycling stability. On this basis, this work would bring a promising material for various energy storage devices and other emerging applications.展开更多
Highly anisotropic thermal conductive materials are of significance in thermal management applications. However,accurate determination of ultrathin composite thermal properties is a daunting task due to the tiny therm...Highly anisotropic thermal conductive materials are of significance in thermal management applications. However,accurate determination of ultrathin composite thermal properties is a daunting task due to the tiny thermal conductance,severely hindering the further exploration of novel efficient thermal management materials, especially for size-confined environments. In this work, by utilizing a hybrid measuring method, we demonstrate an accurate determination of thermal properties for montmorillonite/reduced graphene oxide(MMT/r GO) composite film with a thickness range from 0.2 μm to2 μm. The in-plane thermal conductivity measurement is realized by one-dimensional(1D) steady-state heat conduction approach while the cross-plane one is achieved via a modified 3ω method. As-measured thermal conductivity results are cross-checked with different methods and known materials, revealing the high measurement accuracy. A high anisotropic ratio of 60.5, independent of composite thickness, is observed in our measurements, further ensuring the negligible measurement error. Notably, our work develops an effective approach to the determination of ultrathin composite thermal conductivity, which may promote the development of ultrathin composites for potential thermal-related applications.展开更多
The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the v...The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film.展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
A composition-modulated (HfO2)x(Al2O3)1-x charge trapping layer is proposed for charge trap flash memory by controlling the A1 atom content to form a peak and valley shaped band gap. It is found that the memory de...A composition-modulated (HfO2)x(Al2O3)1-x charge trapping layer is proposed for charge trap flash memory by controlling the A1 atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO2)x(Al2O3)l-x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application.展开更多
In this article, we present a time-dependent model that enables us to describe the dynamic behavior of pulsed DC reactive sputtering and predict the film compositions of VOx prepared by this process. In this modeling,...In this article, we present a time-dependent model that enables us to describe the dynamic behavior of pulsed DC reactive sputtering and predict the film compositions of VOx prepared by this process. In this modeling, the average current J is replaced by a new parameter of Jeff. Meanwhile, the four species states of V, V2O3, VO2, and V2O5 in the vanadium oxide films are taken into consideration. Based on this work, the influences of the oxygen gas supply and the pulsed power parameters including the duty cycle and frequency on film compositions are discussed. The model suggests that the time to reach process equilibrium may vary substantially depending on these parameters. It is also indicated that the compositions of VOx films are quite sensitive to both the reactive gas supply and the duty cycle when the power supply works in pulse mode. The 'steady-state' balance values obtained by these simulations show excellent agreement with the experimental data, which indicates that the experimentally obtained dynamic behavior of the film composition can be explained by this time-dependent modeling for pulsed DC reactive sputtering process. Moreover, the computer simulation results indicate that the curves will essentially yield oscillations around the average value of the film compositions with lower pulse frequency.展开更多
文摘The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, T 〈 500℃, 500℃ 〈 T 〈 800℃ and T 〉 800℃. The Rutherford baekscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at T 〈 500℃ and T 〉 800℃ is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500℃ 〈 T 〈 800℃ strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon-nickel films annealed from 300 to 500℃ are increased, while from 500 to 1000℃ these characteristics are decreased. It can be seen that at 800℃, films have maximum values of porosity and roughness.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474075)
文摘This paper reports that single-layer and graded Au-TiO2 granular composite films with Au atom content 15%- 66% were prepared by using reactive co-sputtering technique. The third-order optical nonlinearity of single-layer and graded composite films was investigated by using s- and p-polarized Z-scans in femtosecond time scale. The nonlinear absorption coefficient βeff of single-layer Au-TiO2 films is measured to be -2.3×10^3-0.76×10^3 cm/GW with Au atom content 15%-66%. The βeff value of the 10-layer Au-TiO2 graded film is enhanced to be -2.1×10^4cm/GW calculated from p-polarized Z-scans, which is about ten times the maximum βeff of single-layer films. Broadened response in the wavelength region 730-860 nm of the enhanced optical nonlinearity of graded Au-TiO2 composite films was also investigated.
基金the National Natural Science Foundation of China(Grant No.60977028)the Key Project Foundation of Shanghai,China(Grant No.09JC1413800)
文摘We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structured layers was performed by increasing the deposition temperature of the Al layers to 270℃. The highly submicro-textured silver and aluminum double-structured layers were prepared by thermal evaporation on quartz glasses and their surface microstructure, light scattering properties, and thermal stability were investigated. Results showed that the highly submicro-textured Ag/Al composite films prepared at low substrate temperatures used as back reflectors not only can enhance the light scattering and have good thermal stability, but also have good adhesion properties. In addition, their fabrication is low cost and readily carried out.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174137,11474215 and 21204058the Natural Science Foundation for the Youth of Jiangsu Province under Grant No BK20130284the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.
基金financial support of this work by the National Natural Science Foundation of China(Nos.22378332,52003219)the Open Fund of Zhejiang Key Laboratory of Flexible Electronics(No.2022FE008)+1 种基金the Natural Science Foundation of Ningbo(NO.2022J058)Ministry of Industry and Information Technology high quality development project(TC220A04A-206).
文摘Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are still insufficient for high-barrier packaging applications.In this study,oxygen scavenger hydroxyl-terminated polybutadiene(HTPB)and cobalt salt catalyst were incorporated into the PLA/poly(butylene adipate-co-terephthalate)(PLA/PBAT),followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films.The oxygen permeability coefficient of the composite film combined with 6 wt%oxygen scavenger and 0.4 wt%catalyst was decreased significantly from 377.00 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1) to 0.98 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1),showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film.Meanwhile,the degradation behavior of the composite film was also accelerated,exhibiting a mass loss of nearly 60%of the original mass after seven days of degradation in an alkaline environment,whereas PLA/PBAT composite film only showed a mass loss of 32%.This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior,which has great potential for high-demanding green chemistry packaging industries,including food,agricultural,and military packaging.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
基金supported by the National Natural Science Foundation of China (No.51072130 and 51502045)the Australian Research Council (ARC) through Discovery Early Career Researcher Award (DECRA, No.DE170100871) program。
文摘Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the poor electronic conductivity, the application of layered silicates for electrochemical energy storage has been greatly limited. Carbon nanotube(CNT) film has excellent electrical conductivity and a unique interconnected network, making it an ideal matrix for composite electrochemical material. We herein report a CNT@nickel silicate composite film(CNT@NiSiO) fabricated by a SiO2-mediated hydrothermal conversion process, for sodium storage with excellent electrochemical properties. The obtained composite possesses a cladding structure with homogeneous nanosheets as the outermost and CNT film as the inner network matrix, providing abundant ion diffusion channels, high electronic conductivity, and good mechanical flexibility. Due to these merits, this material possesses an excellent electrochemical performance for sodium storage, including a high specific capacity up to 390 mAh g-1 at 50 mA g-1, good rate performance up to 205 mAh g-1 at 500 mA g-1, and excellent cycling stability. On this basis, this work would bring a promising material for various energy storage devices and other emerging applications.
基金Project supported by the National Basic Research Program of China (Grant No. 2016YFA0200800)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB07030100)+2 种基金the Sinopec Innovation Scheme (A-527)the National Key Research and Development Program of China (Grant No. 2021YFA0715700)the National Science Fund for Distinguished Young Scholars, China (Grant No. 52125302)。
文摘Highly anisotropic thermal conductive materials are of significance in thermal management applications. However,accurate determination of ultrathin composite thermal properties is a daunting task due to the tiny thermal conductance,severely hindering the further exploration of novel efficient thermal management materials, especially for size-confined environments. In this work, by utilizing a hybrid measuring method, we demonstrate an accurate determination of thermal properties for montmorillonite/reduced graphene oxide(MMT/r GO) composite film with a thickness range from 0.2 μm to2 μm. The in-plane thermal conductivity measurement is realized by one-dimensional(1D) steady-state heat conduction approach while the cross-plane one is achieved via a modified 3ω method. As-measured thermal conductivity results are cross-checked with different methods and known materials, revealing the high measurement accuracy. A high anisotropic ratio of 60.5, independent of composite thickness, is observed in our measurements, further ensuring the negligible measurement error. Notably, our work develops an effective approach to the determination of ultrathin composite thermal conductivity, which may promote the development of ultrathin composites for potential thermal-related applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61222501 and 61335004)
文摘The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film.
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
基金supported by the Science and Technology Research Key Project of Education Department of Henan, China (Grant No. 13A140021)the National Natural Science Foundation of China (Grant Nos. 50972054 and 61176124)+1 种基金the National Basic Research Program of China (Grant No. 2010CB934201)the State Key Program for Science and Technology of China (Grant No. 2009ZX02039-004)
文摘A composition-modulated (HfO2)x(Al2O3)1-x charge trapping layer is proposed for charge trap flash memory by controlling the A1 atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO2)x(Al2O3)l-x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application.
基金Project partially supported by the National Natural Science Foundation of China(Grant Nos.61071032,61377063,and 61235006)
文摘In this article, we present a time-dependent model that enables us to describe the dynamic behavior of pulsed DC reactive sputtering and predict the film compositions of VOx prepared by this process. In this modeling, the average current J is replaced by a new parameter of Jeff. Meanwhile, the four species states of V, V2O3, VO2, and V2O5 in the vanadium oxide films are taken into consideration. Based on this work, the influences of the oxygen gas supply and the pulsed power parameters including the duty cycle and frequency on film compositions are discussed. The model suggests that the time to reach process equilibrium may vary substantially depending on these parameters. It is also indicated that the compositions of VOx films are quite sensitive to both the reactive gas supply and the duty cycle when the power supply works in pulse mode. The 'steady-state' balance values obtained by these simulations show excellent agreement with the experimental data, which indicates that the experimentally obtained dynamic behavior of the film composition can be explained by this time-dependent modeling for pulsed DC reactive sputtering process. Moreover, the computer simulation results indicate that the curves will essentially yield oscillations around the average value of the film compositions with lower pulse frequency.