The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don...The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.展开更多
Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes ...Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.展开更多
The zero_failure data research is a new field in the recent years, but it is required urgently in practical projects, so the work has more theory and practical values. In this paper, for zero_failure data (t i,n i...The zero_failure data research is a new field in the recent years, but it is required urgently in practical projects, so the work has more theory and practical values. In this paper, for zero_failure data (t i,n i) at moment t i , if the prior distribution of the failure probability p i=p{T【t i} is quasi_exponential distribution, the author gives the p i Bayesian estimation and hierarchical Bayesian estimation and the reliability under zero_failure date condition is also obtained.展开更多
The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material p...The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.展开更多
Radio propagation in dense and super dense wireless networks as well as indoor-to-outdoor picocell networks can have multiple line-of-sight or multiple specular components. The performance of a dual-hop decode-and-for...Radio propagation in dense and super dense wireless networks as well as indoor-to-outdoor picocell networks can have multiple line-of-sight or multiple specular components. The performance of a dual-hop decode-and-forward relaying system over multiple specular components fading channels(MSCC)with multiple Rayleigh distributed co-channel interferers in an interference-limited environment is investigated. The MSCC fading model is designed to allow direct and meaningful comparisons to be made between line-of-sight channels and non-line-of-sight channels, with exact parameter correspondences. Comparisons of outage and bit error performance between Nakagami-m/Rayleigh and MSCC/Rayleigh fading environments show that the MSCC model is needed to describe line-of-sight channels that cannot be accurately modeled by the Nakagami-m, or other fading models.展开更多
The complex and uncertain relationship among failures was always ignored in failure sample selection based on traditional testability demonstration experimental method. A failure pervasion model is founded based on fu...The complex and uncertain relationship among failures was always ignored in failure sample selection based on traditional testability demonstration experimental method. A failure pervasion model is founded based on fuzzy probability Petri net (FPPN) which can depict the propagation and pervasion relation among failures,then failure pervasion intensity is defined,the process of failure pervasion was depicted based on k-step fault pervasion algorithm and the pervasion intensity was expressed by a value. The method of sample selection based on failure pervasion intensity and failure rate is introduced into the process of sample selection. The practical application shows that the sample set selected based on failure pervasion intensity and failure rate can represent the failure set adequately.展开更多
文摘The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.
基金funded by a grant from Natural Sciences and Engineering Research Council of Canada (NSERC)the authors would like to acknowledge the Niobec mine (Saint-Honoré, QuébecQuébec)
文摘Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.
文摘The zero_failure data research is a new field in the recent years, but it is required urgently in practical projects, so the work has more theory and practical values. In this paper, for zero_failure data (t i,n i) at moment t i , if the prior distribution of the failure probability p i=p{T【t i} is quasi_exponential distribution, the author gives the p i Bayesian estimation and hierarchical Bayesian estimation and the reliability under zero_failure date condition is also obtained.
基金The Defence Advance Research Program of Science and Technology of Ship Industry(Grant No.11J1.3.1)
文摘The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.
基金supported by Fundamental Research Funds for the Central Universities No. 2014JBZ001the NSFC project No.11171016the National Program No.2015AA01A709
文摘Radio propagation in dense and super dense wireless networks as well as indoor-to-outdoor picocell networks can have multiple line-of-sight or multiple specular components. The performance of a dual-hop decode-and-forward relaying system over multiple specular components fading channels(MSCC)with multiple Rayleigh distributed co-channel interferers in an interference-limited environment is investigated. The MSCC fading model is designed to allow direct and meaningful comparisons to be made between line-of-sight channels and non-line-of-sight channels, with exact parameter correspondences. Comparisons of outage and bit error performance between Nakagami-m/Rayleigh and MSCC/Rayleigh fading environments show that the MSCC model is needed to describe line-of-sight channels that cannot be accurately modeled by the Nakagami-m, or other fading models.
基金Sponsored by the"11th 5-Year Plan"Advanced Research Fund of a National Ministerial Level Project (51317040102)
文摘The complex and uncertain relationship among failures was always ignored in failure sample selection based on traditional testability demonstration experimental method. A failure pervasion model is founded based on fuzzy probability Petri net (FPPN) which can depict the propagation and pervasion relation among failures,then failure pervasion intensity is defined,the process of failure pervasion was depicted based on k-step fault pervasion algorithm and the pervasion intensity was expressed by a value. The method of sample selection based on failure pervasion intensity and failure rate is introduced into the process of sample selection. The practical application shows that the sample set selected based on failure pervasion intensity and failure rate can represent the failure set adequately.