A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate...A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing ...Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing the complex stiffness transfer model to simulate compaction effect and tapered fictitious soil pile model to simulate stress diffusion,the analytical solution for the torsional impedance at tapered pile top is obtained by virtue of Laplace transform technique and impedance transfer method.Based on the present solution,a parametric study is conducted to investigate the rationality of the present solution and the influence of soil and pile properties on the torsional vibration characteristics of tapered pile embedded in layered soil.The results show that,both the compaction effect and stress diffusion effect have significant influence on the torsional vibration characteristics of tapered pile,and these two factors should be considered during the dynamic design of pile foundation.展开更多
To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(...To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(6)](X_(2)pdt=(SCH_(2))_(2)CX_(2),X=Me,H)with aminodiphosphines(Ph_(2)PCH_(2))_(2)NY(Y=(CH_(2))_(2)OH,(CH_(2))_(3)OH)to obtain two new diiron aminophosphine complexes[Fe_(2)(L1)(μ-Me_(2)pdt)(CO)_(5)](1)and[Fe_(2)(L2)(μ-H_(2)pdt)(CO)_(5)](2),where L1=3-[(diphe-nylphosphaneyl)methyl]oxazolidine,L2=3-[(diphenylphosphaneyl)methyl]-1,3-oxazinane.Moreover,the structures of 1 and 2 have been fully confirmed by elemental analysis,spectroscopic techniques,and single-crystal X-ray diffraction.Using cyclic voltammetry(CV),we investigated the electrochemical redox performance and proton reduc-tion activities of 1 and 2 in acetic acid(HOAc).The CV study indicates that diiron aminophosphine complexes 1 and 2 can be considered to be hydrogenase-inspired diiron molecular electrocatalysts for the reduction of protons into H 2 generation in the presence of HOAc.CCDC:2443967,1;2443969,2.展开更多
基金Project(51805368)supported by the National Natural Science Foundation of ChinaProject(2018QNRC001)supported by the Young Elite Scientists Sponsorship Program,China+1 种基金Project(DMETKF2021017)supported by the Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,ChinaProject(HTL-0-21G07)supported by the National key Laboratory of Science and Technology on Heicopter Transmission,China。
文摘A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
基金Projects(51578164,51678547,51878634,51878185,41807262)supported by the National Natural Science Foundation of China。
文摘Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing the complex stiffness transfer model to simulate compaction effect and tapered fictitious soil pile model to simulate stress diffusion,the analytical solution for the torsional impedance at tapered pile top is obtained by virtue of Laplace transform technique and impedance transfer method.Based on the present solution,a parametric study is conducted to investigate the rationality of the present solution and the influence of soil and pile properties on the torsional vibration characteristics of tapered pile embedded in layered soil.The results show that,both the compaction effect and stress diffusion effect have significant influence on the torsional vibration characteristics of tapered pile,and these two factors should be considered during the dynamic design of pile foundation.
文摘To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(6)](X_(2)pdt=(SCH_(2))_(2)CX_(2),X=Me,H)with aminodiphosphines(Ph_(2)PCH_(2))_(2)NY(Y=(CH_(2))_(2)OH,(CH_(2))_(3)OH)to obtain two new diiron aminophosphine complexes[Fe_(2)(L1)(μ-Me_(2)pdt)(CO)_(5)](1)and[Fe_(2)(L2)(μ-H_(2)pdt)(CO)_(5)](2),where L1=3-[(diphe-nylphosphaneyl)methyl]oxazolidine,L2=3-[(diphenylphosphaneyl)methyl]-1,3-oxazinane.Moreover,the structures of 1 and 2 have been fully confirmed by elemental analysis,spectroscopic techniques,and single-crystal X-ray diffraction.Using cyclic voltammetry(CV),we investigated the electrochemical redox performance and proton reduc-tion activities of 1 and 2 in acetic acid(HOAc).The CV study indicates that diiron aminophosphine complexes 1 and 2 can be considered to be hydrogenase-inspired diiron molecular electrocatalysts for the reduction of protons into H 2 generation in the presence of HOAc.CCDC:2443967,1;2443969,2.