期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on Ultrasonic NDT System for Complex Surface Parts
1
作者 MA Hong-wei, ZHANG Xu-hui, WEI Juan (Department of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期12-,共1页
Aimed at inner quality controlling for complex surface parts, an ultrasonic testing system for complex surface parts has been developed using ultrasonic NDT(Non-destructive Testing)which has features of strong penetra... Aimed at inner quality controlling for complex surface parts, an ultrasonic testing system for complex surface parts has been developed using ultrasonic NDT(Non-destructive Testing)which has features of strong penetration, well direction, high sensitivity, low cost, and harmless to people and material. The technologies of the computer, NC (Numerical control), precision mechanism, signal analysis and processing were integrated in the testing system. The system includes a PC, system software, ultrasonic data acquisition card, stepper motor drive card and five-axis precision mechanical device, etc. The software was developed using WIN98-based VC++. According to CAD data of the parts and interpolation methods, the scanning programs can be programmed. The five-axis scanning system is driven by the CNC(computer numerical control) system to control the attitude of ultrasonic probes. The system’s automatic scanning for complex surface parts, real-time acquiring ultrasonic data and automatic identifying flaw signal have been realized. This system can be used not only for testing complex surface parts, but for testing random curve parts. With fast testing speed, high sensitivity, high testing precision and high reliability, the system has a wide adaptability. 展开更多
关键词 complex surface ultrasonic non-destructive testing SYSTEM
在线阅读 下载PDF
A novel five-axis on-machine measurement optimization method for complex curved surfaces
2
作者 GUO Yan-heng WAN Neng ZHUANG Qi-xin 《Journal of Central South University》 2025年第2期523-537,共15页
On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation f... On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method. 展开更多
关键词 on-machine measurement complex curved surfaces efficiency optimization error compensation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部