Modern processing technology is calling the scientific understanding of dynamic processes,where the science of complex fluids plays a central role.We summarize our recent efforts using the generic approaches of multi-...Modern processing technology is calling the scientific understanding of dynamic processes,where the science of complex fluids plays a central role.We summarize our recent efforts using the generic approaches of multi-scale physics of complex fluids on apparently irrelevant processes,i.e.the mixing of polymer blends,the processing of thermoplastic(TP) toughened thermosetting(TS) composites using phase separation of TP in TS,as well as the enhanced oil recovery using polymer soft gel.It is emphasized that the thorough physical understanding in multi-scales of time and space through the joint efforts of experiment and theory in each scale is the key issue for the modeling of various processes.展开更多
Phase change microcapsules can carry large amounts of heat and be dispersed into other mediums either as a solid composite or as slurry fluids without changes to their appearance or fluidity. These two standout featur...Phase change microcapsules can carry large amounts of heat and be dispersed into other mediums either as a solid composite or as slurry fluids without changes to their appearance or fluidity. These two standout features make phase change microcapsules ideal for use in thermal energy applications to enhance the efficiency of energy utilisation. This review paper includes methods used for the encapsulation of phase change materials, especially the method suitable for large scale productions, the trends of phase change microcapsule development and their use in thermal energy applications in static and dynamic conditions. The effect of phase change microcapsules on convective heat transfer through addition to thermal fluids as slurries is critically reviewed. The review highlighted that so far the phase change microcapsules used mainly have polymeric shells, which has very low thermal conductivities. Their enhancement in convective heat transfer was demonstrated in locations where the phase change material experiences phase change. The phase change results in the slurries having higher apparent local specific heat capacities and thus higher local heat transfer coefficients. Out of the phase change region, no enhancement is observed from the solid microcapsule particles due to the low specific heat capacity and thermal conductivity of the phase change microcapsules compared to that of water, which is normally used as slurry media in the test. To further the research in this area, phase change microcapsules with higher specific heat capacity, higher thermal conductivity and better shape stability need to be applied.展开更多
基金Project(20490224) supported by the National Natural Science Foundation of ChinaProject(2003CB615604) supported by the Major State Basic Research and Development Program of ChinaProject supported by Shengli oil field,SINOPEC Petrochemical Co. Ltd.
文摘Modern processing technology is calling the scientific understanding of dynamic processes,where the science of complex fluids plays a central role.We summarize our recent efforts using the generic approaches of multi-scale physics of complex fluids on apparently irrelevant processes,i.e.the mixing of polymer blends,the processing of thermoplastic(TP) toughened thermosetting(TS) composites using phase separation of TP in TS,as well as the enhanced oil recovery using polymer soft gel.It is emphasized that the thorough physical understanding in multi-scales of time and space through the joint efforts of experiment and theory in each scale is the key issue for the modeling of various processes.
文摘Phase change microcapsules can carry large amounts of heat and be dispersed into other mediums either as a solid composite or as slurry fluids without changes to their appearance or fluidity. These two standout features make phase change microcapsules ideal for use in thermal energy applications to enhance the efficiency of energy utilisation. This review paper includes methods used for the encapsulation of phase change materials, especially the method suitable for large scale productions, the trends of phase change microcapsule development and their use in thermal energy applications in static and dynamic conditions. The effect of phase change microcapsules on convective heat transfer through addition to thermal fluids as slurries is critically reviewed. The review highlighted that so far the phase change microcapsules used mainly have polymeric shells, which has very low thermal conductivities. Their enhancement in convective heat transfer was demonstrated in locations where the phase change material experiences phase change. The phase change results in the slurries having higher apparent local specific heat capacities and thus higher local heat transfer coefficients. Out of the phase change region, no enhancement is observed from the solid microcapsule particles due to the low specific heat capacity and thermal conductivity of the phase change microcapsules compared to that of water, which is normally used as slurry media in the test. To further the research in this area, phase change microcapsules with higher specific heat capacity, higher thermal conductivity and better shape stability need to be applied.