为提高运动想象脑机接口识别准确率,结合共空间模式(common spatial pattern,CSP)和卷积神经网络(convolutional neural network,CNN)方法,提出一种改进滤波器组共空间模式(filter bank common spatial pattern,FBCSP)和CNN的算法,用于...为提高运动想象脑机接口识别准确率,结合共空间模式(common spatial pattern,CSP)和卷积神经网络(convolutional neural network,CNN)方法,提出一种改进滤波器组共空间模式(filter bank common spatial pattern,FBCSP)和CNN的算法,用于多分类运动想象脑电信号识别任务。信号预处理后,使用包含重叠频带的FBCSP计算空间投影矩阵,数据经过投影得到更有区分度的特征序列。然后将特征序列以二维排列方式输入搭建的CNN模型中进行分类。所提出方法在脑机接口竞赛数据集2a和Ⅲa上验证,并和其他文献方法对比。结果表明,本文方法一定程度上提高了运动想象脑电信号的分类准确率,为运动想象研究提供了一个有效办法。展开更多
针对脑电信号具有非平稳性、非线性以及个体差异较大等特点而导致特征提取困难、分类准确率低的问题,提出一种基于LMD-CSP和随机森林(Random Forest,RF)的脑电信号分类方法。首先对脑电信号进行预处理,然后利用局部均值分解(Local Mean ...针对脑电信号具有非平稳性、非线性以及个体差异较大等特点而导致特征提取困难、分类准确率低的问题,提出一种基于LMD-CSP和随机森林(Random Forest,RF)的脑电信号分类方法。首先对脑电信号进行预处理,然后利用局部均值分解(Local Mean Decomposition,LMD)将预处理后的脑电信号分解为多个乘积函数(Product Function,PF)分量,并选出最具判别性的PF分量,再利用共空间模式(Common Spatial Pattern,CSP)分别对选出的PF分量进行特征提取,最后将得到的CSP特征输入随机森林分类器中进行分类识别。实验结果表明,该方法的平均分类准确率高达92.18%,远高于其他方法,证明了该方法的有效性。展开更多
文摘为提高运动想象脑机接口识别准确率,结合共空间模式(common spatial pattern,CSP)和卷积神经网络(convolutional neural network,CNN)方法,提出一种改进滤波器组共空间模式(filter bank common spatial pattern,FBCSP)和CNN的算法,用于多分类运动想象脑电信号识别任务。信号预处理后,使用包含重叠频带的FBCSP计算空间投影矩阵,数据经过投影得到更有区分度的特征序列。然后将特征序列以二维排列方式输入搭建的CNN模型中进行分类。所提出方法在脑机接口竞赛数据集2a和Ⅲa上验证,并和其他文献方法对比。结果表明,本文方法一定程度上提高了运动想象脑电信号的分类准确率,为运动想象研究提供了一个有效办法。