期刊文献+
共找到247篇文章
< 1 2 13 >
每页显示 20 50 100
A new grey forecasting model based on BP neural network and Markov chain 被引量:6
1
作者 李存斌 王恪铖 《Journal of Central South University of Technology》 EI 2007年第5期713-718,共6页
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq... A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1). 展开更多
关键词 grey forecasting model neural network Markov chain electricity demand forecasting
在线阅读 下载PDF
Intelligent predictive model of ventilating capacity of imperial smelt furnace 被引量:1
2
作者 唐朝晖 胡燕瑜 +1 位作者 桂卫华 吴敏 《Journal of Central South University of Technology》 2003年第4期364-368,共5页
In order to know the ventilating capacity of imperial smelt furnace(ISF), and increase the output of plumbum, an intelligent modeling method based on gray theory and artificial neural networks(ANN) is proposed, in whi... In order to know the ventilating capacity of imperial smelt furnace(ISF), and increase the output of plumbum, an intelligent modeling method based on gray theory and artificial neural networks(ANN) is proposed, in which the weight values in the integrated model can be adjusted automatically. An intelligent predictive model of the ventilating capacity of the ISF is established and analyzed by the method. The simulation results and industrial applications demonstrate that the predictive model is close to the real plant, the relative predictive error is 0.72%, which is 50% less than the single model, leading to a notable increase of the output of plumbum. 展开更多
关键词 imperial SMELT FURNACE ventilating capacity INTELLIGENT PREDICTIVE model artificial neural network GRAY theory adaptive fuzzy combination
在线阅读 下载PDF
数据驱动的燃气轮机联合循环机组退化分析与预测 被引量:2
3
作者 曹启威 陈时熠 向文国 《中国电机工程学报》 北大核心 2025年第6期2243-2250,I0017,共9页
燃气轮机联合循环机组在长期运行后,性能会出现退化,需要及时进行维护。但由于机组退化程度不能直接测量,因此,该文基于改进的深度前向神经网络开发一种数据驱动的退化建模方法,将能够表达重型燃气轮机联合循环系统状态的关键测点数据... 燃气轮机联合循环机组在长期运行后,性能会出现退化,需要及时进行维护。但由于机组退化程度不能直接测量,因此,该文基于改进的深度前向神经网络开发一种数据驱动的退化建模方法,将能够表达重型燃气轮机联合循环系统状态的关键测点数据融合为健康指数以表征联合循环机组的健康状态。通过这种方法分析联合循环机组及其部件性能变化的趋势。结果表明,机组的性能退化主要来自于其蒸汽系统的退化,这与电厂大修总结报告的描述相吻合,证明该方法的有效性。为满足维修的实际需要,采用基于时间序列的长短期记忆网络建立高精度的预测模型,预测部件及机组的健康指数的均方根误差均小于0.03,可以为联合循环机组维修决策提供一定依据。 展开更多
关键词 燃气轮机联合循环 健康指数 神经网络 退化建模 预后分析
在线阅读 下载PDF
基于注意力循环神经网络的联合深度推荐模型 被引量:1
4
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
在线阅读 下载PDF
基于GA-BP的联合收获机小麦含水率检测模型研究
5
作者 安晓飞 代均益 +3 位作者 李立伟 卢昊 尹彦鑫 孟志军 《农业机械学报》 北大核心 2025年第2期325-332,共8页
为进一步提高基于介电特性的联合收获机小麦含水率检测装置模型检测精度和适用范围,本研究以“京冬22号”、“蜀麦1958”、“涡麦33”3个品种小麦为研究对象,测量含水率范围为8.41%~21.6%,检测温度范围为5~40℃,容重范围为714.44~777.58... 为进一步提高基于介电特性的联合收获机小麦含水率检测装置模型检测精度和适用范围,本研究以“京冬22号”、“蜀麦1958”、“涡麦33”3个品种小麦为研究对象,测量含水率范围为8.41%~21.6%,检测温度范围为5~40℃,容重范围为714.44~777.58 kg/m^(3)的小麦相对介电常数。试验结果表明,同一温度条件下,容重越大,相对介电常数越大;在同一容重条件下,相对介电常数会随温度升高而增大,也随含水率升高而变大。采用校正集样本150个,预测集样本42个,基于遗传算法优化BP神经网络(GA-BP)的方法建立了相对介电常数、温度、容重与小麦含水率的关系模型,模型采用3-5-1结构,最大迭代次数1000次,学习误差阈值1×10^(-6)。校正集R^(2)、RMSE、MAE分别为0.996、0.241%、0.189%;预测集R^(2)、RMSE、MAE分别为0.993、0.295%、0.189%,该模型具有较高的检测精度和稳定性,为不同品种小麦含水率在线检测提供了一种新的检测方法。 展开更多
关键词 联合收获机 小麦含水率 检测模型 遗传算法 BP神经网络
在线阅读 下载PDF
考虑日期模式等效和多级并行卷积模块的短期负荷预测
6
作者 范竞敏 贺广林 +3 位作者 钟铭伟 王新刚 徐亮 柯子维 《电网技术》 北大核心 2025年第6期2554-2562,I0121-I0125,共14页
现有基于人工智能的负荷预测方法少有充分考虑节假日类型对负荷的重要影响,这在一定程度上限制了短期负荷预测精度的提升。为进一步提高短期负荷预测的精度。该文提出了一种日期模式等效(date pattern equivalent,DPE)和多级并行Incepti... 现有基于人工智能的负荷预测方法少有充分考虑节假日类型对负荷的重要影响,这在一定程度上限制了短期负荷预测精度的提升。为进一步提高短期负荷预测的精度。该文提出了一种日期模式等效(date pattern equivalent,DPE)和多级并行Inception1D(multilevel parallel Inception1D,MPI)模块用于短期负荷预测。首先对不同日期模式进行等效计算来获取DPE,DPE的输入能帮助模型有效识别不同日期的负荷差异,并将输入数据按时序进行堆叠,然后使用MPI模块提取历史负荷的数据特征,MPI模块能提取历史负荷中更加复杂的特征,进而为预测模块提供更准确的特征输入。基于巴拿马实际历史负荷数据进行算例分析,实验结果表明,该文所提出的DPE和MPI方法均可有效提高模型预测能力,且结合DPE和MPI能更全面地提升预测精度和稳定性。相比单独使用TCN-BiGRU预测模型,DPE-MPI-TCN-BiGRU预测模型的RMSE降低了37.23%。 展开更多
关键词 节假日 短期负荷预测 Inception1D模块 卷积神经网络 组合模型
在线阅读 下载PDF
CEEMDAN改进的CNN-LSTM短期电离层TEC预测模型
7
作者 焦迎香 李克昭 岳哲 《导航定位学报》 北大核心 2025年第3期107-115,共9页
针对电离层总电子含量(TEC)值的时序变化通常呈现非线性和随机性的问题,提出一种结合完全集合经验模态分解(CEEMDAN)和基于卷积神经网络和长短时记忆网络的时空网络(CNN-LSTM)神经网络的TEC预测模型:采用分解、预测和重构的方法,结合CEE... 针对电离层总电子含量(TEC)值的时序变化通常呈现非线性和随机性的问题,提出一种结合完全集合经验模态分解(CEEMDAN)和基于卷积神经网络和长短时记忆网络的时空网络(CNN-LSTM)神经网络的TEC预测模型:采用分解、预测和重构的方法,结合CEEMDAN在时间序列分解上和CNN-LSTM在预测精度上的优势,对电离层TEC值进行短期预测;然后利用国际全球卫星导航系统服务组织(IGS)中心发布的2019和2023年4个季节,以及分布在中高低纬度的6个格网点的TEC格网数据进行实验分析。实验结果表明,CEEMDAN-CNN-LSTM组合模型的预测结果能很好地反映电离层TEC的时间变化特性,在2019年太阳活动低年和2023年太阳活动高年的预测精度均方根误差(RMSE)相较于长短时记忆(LSTM)网络模型可分别平均提升2.62总电子含量单位(TECU)和10.44TECU,相较于CNN-LSTM模型可提升1.85TECU和7.23TECU。 展开更多
关键词 电离层总电子含量(TEC) 长短期记忆(LSTM)神经网络 卷积神经网络(CNN) 完全集合经验模态分解(CEEMDAN) 预测模型
在线阅读 下载PDF
基于CNN-BiLSTM-CBAM的波浪能发电功率短期预测模型研究
8
作者 滕翔宇 罗心仪 +1 位作者 周生奇 张智晟 《电气工程学报》 北大核心 2025年第3期271-279,共9页
波浪能具有较大的波动性,使得波浪能发电系统并网运行时,会对电力系统的安全稳定运行造成严重影响,准确的预测波浪能发电功率对电力系统的实时调度与控制有着重要的作用。为提升波浪能发电功率预测精度,以阵列式(Floating heave-buoy ar... 波浪能具有较大的波动性,使得波浪能发电系统并网运行时,会对电力系统的安全稳定运行造成严重影响,准确的预测波浪能发电功率对电力系统的实时调度与控制有着重要的作用。为提升波浪能发电功率预测精度,以阵列式(Floating heave-buoy array,F-HBA)波浪能发电装置为研究对象,提出基于CNN-Bi LSTM-CBAM组合神经网络的波浪能发电功率预测模型,该模型包括2个子模块,分别为基于CNN-BiLSTM-CBAM组合神经网络的波浪因素预测模块和基于F-HBA的功率转换模块。首先对有效波高和波浪周期进行预测,然后将有效波高和波浪周期的预测值输入功率转换模型,最终得到预测的波浪能发电功率值。通过实际仿真算例验证了基于CNN-Bi LSTM-CBAM组合神经网络的波浪能发电功率预测模型的准确性。 展开更多
关键词 波浪能 发电功率预测 CBAM注意力模块 组合神经网络 功率转换模型
在线阅读 下载PDF
基于Hyperband-CNN-BiLSTM模型的车辆油耗预测方法
9
作者 吐尔逊·买买提 孙慧 刘亚楼 《科学技术与工程》 北大核心 2025年第9期3896-3904,共9页
为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网... 为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网络(convolutional neural network,CNN)强大的特征提取能力和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)在处理时序数据方面的优势,构建了基于CNN-BiLSTM的车辆油耗预测组合模型;然后,为提高模型预测准确性,通过Hyperband优化算法对组合模型进行优化,并将车辆油耗影响因素作为模型输入特征,对模型进行训练,实现对车辆油耗的建模和预测;最后,选取CNN、LSTM、BiLSTM、CNN-LSTM、CNN-BiLSTM作为对比模型,对Hyperband-CNN-BiLSTM预测模型效果进行评价。结果表明,相较于其他模型,Hyperband-CNN-BiLSTM模型的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean squared error,RMSE)最小,分别为0.05769和0.11925,R^(2)最大,为0.99176,模型预测效果最佳。 展开更多
关键词 Hyperband 油耗预测 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 组合模型
在线阅读 下载PDF
基于REMD-CNN-Transformer-LSTM组合模型的碳排放交易价格预测
10
作者 乔松博 孙瑜 +2 位作者 胡海 俞静 王伟 《西安理工大学学报》 北大核心 2025年第2期186-196,共11页
精确预测碳排放交易价格有助于政府制定相关政策和完善市场机制,对确保电碳耦合交易的稳定性和效率具有关键作用。因此如何运用深度学习技术来提高碳排放权价格的预测能力是一个重要问题。本文提出了一种REMD-CNN-Transformer-LSTM多因... 精确预测碳排放交易价格有助于政府制定相关政策和完善市场机制,对确保电碳耦合交易的稳定性和效率具有关键作用。因此如何运用深度学习技术来提高碳排放权价格的预测能力是一个重要问题。本文提出了一种REMD-CNN-Transformer-LSTM多因素碳排放交易价格预测的组合模型。通过对2022年1月至2024年10月的全国碳市场的碳排放交易价格进行实例分析,REMD-CNN-Transformer-LSTM模型较Transformer-LSTM模型和REMD-LSTM模型在MAPE上分别降低了0.6948%和0.4129%,表明该模型的预测更准确,评价指标表现更好。 展开更多
关键词 碳排放交易价格 鲁棒经验模态分解 卷积神经网络 长短期记忆网络 组合模型
在线阅读 下载PDF
基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法
11
作者 曾金灿 何耿生 +3 位作者 李姚旺 杜尔顺 张宁 朱浩骏 《上海交通大学学报》 北大核心 2025年第6期746-757,共12页
电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电... 电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电-碳间的相关关系,以电力历史数据为基础,基于机器学习方法提出一种电力行业短期以电折碳方法,实时估算电力行业短期碳排放情况.该方法使用卷积神经网络进行特征提取,并采用轻量级梯度提升树算法开展基于特征提取值的碳排放测算.此外,为了提升模型的泛化能力和鲁棒性,在模型训练中采用K折交叉验证技术,在模型参数优化过程中采用网格搜索技术.最后,为了验证所提模型的有效性,对比所提模型和其他机器学习模型在同等数据集划分条件下分别基于日度数据集与小时数据集中进行训练的效果.结果表明:所提模型在效果评估和测算值与目标值分布分析中均优于其他模型,能够较好地反映电力行业的短期碳排放情况. 展开更多
关键词 以电折碳 卷积神经网络 轻量级梯度提升树算法 碳排放 机器学习 组合模型
在线阅读 下载PDF
白条猪价格预测模型构建 被引量:5
12
作者 刘合兵 华梦迪 +1 位作者 席磊 尚俊平 《河南农业大学学报》 CAS CSCD 北大核心 2024年第1期123-131,共9页
【目的】增强农产品价格预测准确度,为农产品价格的有效预测提供参考。【方法】以河南省白条猪每周平均批发价格为研究对象,提出一种基于序列分解、主成分分析和神经网络(CEEMDAN-PCA-CNN-LSTM)的白条猪价格预测方法。首先,使用自适应... 【目的】增强农产品价格预测准确度,为农产品价格的有效预测提供参考。【方法】以河南省白条猪每周平均批发价格为研究对象,提出一种基于序列分解、主成分分析和神经网络(CEEMDAN-PCA-CNN-LSTM)的白条猪价格预测方法。首先,使用自适应白噪声完全集合模态分解方法(CEEMDAN)对白条猪价格序列进行分解;其次,选用皮尔逊相关系数筛选影响价格波动的相关因素;再次,利用主成分分析(PCA)对影响因素及分解得到的子序列降维处理并作为原始价格序列的特征值,并行输入到作为编码器的卷积神经网络(CNN)中进行特征提取;最后,引入长短期记忆网络(LSTM)作为解码器输出得到预测结果。将该方法应用于河南省白条猪每周平均价格数据,与LSTM、门控循环单元(GRU)、CNN、基于卷积的长短期记忆网络(ConvLSTM)模型进行比较。【结果】CEEMDAN-PCA-CNN-LSTM组合模型预测方法得到的平均绝对误差分别降低了44.95%、27.30%、28.13%、43.17%。【结论】CEEMDAN-PCA-CNN-LSTM模型对于河南省白条猪市场价格的预测性能更优,有助于相关部门针对河南省白条猪价格波动做出科学决策。 展开更多
关键词 价格预测 自适应白噪声完全集合模态分解 主成分分析 神经网络 组合模型
在线阅读 下载PDF
ML组合的CYGNSS海面风速反演质量控制模型 被引量:1
13
作者 张云 赵星宇 +3 位作者 杨树瑚 孙聪 韩彦岭 尹继伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期20-29,共10页
卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出... 卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出一种基于机器学习(ML)组合的海面风速反演模型。在基于CNN回归模型的CYGNSS反演海面风速基础上,ML分类模型生成CNN回归结果的质量标志位,该标志位可以检测并删除CNN回归结果的异常值,进一步提高风速反演结果的数据质量,ML分类模型能够更好地考虑各种数据误差之间的相互作用,而不是单独使用每个条件的阈值,以达到更优的海面风速反演精度的效果。实验对比了Logistic回归(LR)、决策树(DT)、朴素贝叶斯模型、K最邻近(KNN)算法、神经网络(NN)模型、支持向量机(SVM)算法等6个分类模型,其中,基于KNN算法的分类模型对风速反演质量控制的效果最优。所提风速反演组合模型显著提高了反演结果的精度,在0~20 m/s区间内,异常样本过滤率为81.27%,在所有被过滤的数据中,过滤正确率为86.03%;风速反演误差的均方根误差从无ML分类模型的1.7 m/s降低到有ML分类模型的1.44 m/s,其中,训练样本为0~10 m/s的反演结果精度提升效果较为明显,证明了所提风速反演组合模型对风速质量控制的有效性。 展开更多
关键词 气旋全球导航卫星系统 风速反演 质量控制 机器学习组合模型 卷积神经网络 K最邻近算法
在线阅读 下载PDF
某纯电驱动重载车辆能耗预测模型
14
作者 王尔烈 王帅 +3 位作者 皮大伟 王洪亮 王显会 谢伯元 《兵工学报》 EI CAS CSCD 北大核心 2024年第4期1229-1236,共8页
高精度能耗预测模型是准确预测车辆续驶里程的重要前提。针对载荷大幅度变化且非结构化道路运行的纯电驱动重载车辆,建立其组合能耗模型,该模型由能耗计算基本模型与长短时记忆(Long Short-Term Memory,LSTM)神经网络差值修正两部分组... 高精度能耗预测模型是准确预测车辆续驶里程的重要前提。针对载荷大幅度变化且非结构化道路运行的纯电驱动重载车辆,建立其组合能耗模型,该模型由能耗计算基本模型与长短时记忆(Long Short-Term Memory,LSTM)神经网络差值修正两部分组成。基于能量流动过程驱动电机和变速器效率建模,结合汽车行驶动力学建立能耗计算基本模型;采用LSTM神经网络来修正基本模型能耗预测结果与车辆典型工况功率测试值的差值,有效提高了大幅变载荷且低信噪比坡度环境下的车辆能耗预测精度,因此组合能耗模型具有参数简单和模型拟合不需解释能耗规律的优点。经试验测试分析,与VT-Micro能耗模型和径向基(Radial Basis Function,RBF)神经网络能耗模型相比,所提组合能耗模型的功率预测平均误差率分别降低了17.76%和3.35%,能够实现纯电驱动重载车辆复杂工况下能耗的准确实时预测。 展开更多
关键词 纯电驱动重载车辆 组合能耗模型 长短时记忆神经网络 行驶动力学 复杂工况
在线阅读 下载PDF
基于排序蒸馏的序列化推荐算法
15
作者 杨兴耀 张君 +3 位作者 于炯 李梓杨 许凤 梁灏文 《计算机工程与设计》 北大核心 2024年第8期2475-2483,共9页
为解决当前基于知识蒸馏的推荐算法排名有效性和效率低,以及现有知识蒸馏模型更强调的是静态和单一知识迁移的问题,提出一种基于排序蒸馏的序列化推荐算法。训练一个性能优越、规模大的教师模型,训练一个符合移动终端设备的小模型即学... 为解决当前基于知识蒸馏的推荐算法排名有效性和效率低,以及现有知识蒸馏模型更强调的是静态和单一知识迁移的问题,提出一种基于排序蒸馏的序列化推荐算法。训练一个性能优越、规模大的教师模型,训练一个符合移动终端设备的小模型即学生模型,使学生模型在教师模型的指导下学习排序。学生模型实现了与教师模型相似的排名性能,且学生模型规模较小提高了在线推荐效率。通过在数据集MovieLens和Gowalla上的实验,验证了该模型增强了学生模型的学习效果,缓解了学生模型学习不充分导致排名不佳的问题。模型可以自然地运用于序列化推荐的模型中,具有很好的通用性。 展开更多
关键词 排序蒸馏 迁移学习 模型压缩 卷积神经网络 序列化推荐 合并蒸馏 混合加权
在线阅读 下载PDF
42CrMo钢精密切削的刀具磨损量预测研究 被引量:1
16
作者 成钢 唐昆 +4 位作者 刘庞中 刘子聪 袁剑平 胡永乐 毛聪 《工具技术》 北大核心 2024年第3期138-143,共6页
针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积... 针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积核等进行优化,结合CNN网络特征提取能力强、LSTM网络具备记忆能力的特点,对实际加工实验的刀具磨损量进行预测,并通过误差评价指标分析,与CNN、LSTM、BP等单一模型以及PSO-GRNN组合模型进行预测效果对比研究。研究结果表明,本文构建的组合预测模型相对于单一预测模型,其预测值与真实值吻合程度更高;相对于PSO-GRNN组合模型,三种误差评价指标的误差值至少降低了27%,其泛化性和稳定性较好,预测精度与非线性拟合能力更强。 展开更多
关键词 刀具磨损量 组合预测模型 量子粒子群算法优化 卷积神经网络 长短期神经网络
在线阅读 下载PDF
基于LSTM人工神经网络的电力系统负荷预测方法 被引量:17
17
作者 陈胜 刘鹏飞 +1 位作者 王平 马建伟 《沈阳工业大学学报》 CAS 北大核心 2024年第1期66-71,共6页
针对电力市场环境下短期电力系统负荷预测准确性较低的问题,提出了一种基于LSTM人工神经网络的组合预测模型。分析了LSTM神经网络和其变体GRU神经网络在进行负荷预测时学习时序特征的独特优势,并以卷积神经网络作为负荷数据的特征提取层... 针对电力市场环境下短期电力系统负荷预测准确性较低的问题,提出了一种基于LSTM人工神经网络的组合预测模型。分析了LSTM神经网络和其变体GRU神经网络在进行负荷预测时学习时序特征的独特优势,并以卷积神经网络作为负荷数据的特征提取层,结合GRU网络构建了组合模型,通过建立残差预测模型对结果进行修正。仿真结果表明,具有记忆功能的神经网络预测效果要优于ANN和SVM模型,且所提出残差预测模型的负荷预测平均相对误差约为1.79%,其准确性高于单一算法的负荷预测模型。 展开更多
关键词 负荷预测 人工神经网络 长短期记忆 卷积神经网络 平均相对误差 残差修正 特征提取 组合模型
在线阅读 下载PDF
基于神经网络逆控制的TBCC发动机多变量限制管理
18
作者 于兵强 张永亮 +2 位作者 聂聆聪 黄金泉 鲁峰 《推进技术》 EI CAS CSCD 北大核心 2024年第12期74-84,共11页
涡轮基组合循环(TBCC)发动机的控制系统既需要对执行机构协同控制以充分发挥每个工作模态的性能优势,又需要实现限制管理功能以保证发动机在安全条件下工作。本文通过分析串联式TBCC发动机流路计算过程,建立其性能动态模型,提出了一种... 涡轮基组合循环(TBCC)发动机的控制系统既需要对执行机构协同控制以充分发挥每个工作模态的性能优势,又需要实现限制管理功能以保证发动机在安全条件下工作。本文通过分析串联式TBCC发动机流路计算过程,建立其性能动态模型,提出了一种基于神经网络预测反馈与逆控制的TBCC发动机多变量主控回路,其在单一模式阶跃响应超调小于3%,模态转换推力流量波动小于4%。在多变量控制架构中引入了限制管理策略,通过对比分析基于模型预测控制的多变量约束方法,仿真表明本文提出方法在考虑多变量耦合基础上,在过渡态和模态转换过程中满足超限幅度小于0.2%和0.07%,能有效实现限制管理,且结构简单,易于实现。 展开更多
关键词 组合发动机 限制保护 Min-Max切换 模型预测控制 神经网络逆控制
在线阅读 下载PDF
神经网络结合机器学习的煤与瓦斯突出量和危险性等级预测组合模型 被引量:1
19
作者 李江涛 王飞 《中国矿业》 北大核心 2024年第S02期176-184,共9页
准确预测煤与瓦斯突出危险性能够有效预防煤与瓦斯突出事故,保证煤矿的安全高效生产。为提高煤与瓦斯突出预测模型的准确性和普适性,提取BP神经网络最后一步隐藏层作为随机森林的输入特征,构建了BP神经网络结合随机森林的组合模型(BP-R... 准确预测煤与瓦斯突出危险性能够有效预防煤与瓦斯突出事故,保证煤矿的安全高效生产。为提高煤与瓦斯突出预测模型的准确性和普适性,提取BP神经网络最后一步隐藏层作为随机森林的输入特征,构建了BP神经网络结合随机森林的组合模型(BP-RF模型)。以60组煤与瓦斯突出工程数据集作为样本,采用平均误差、均方误差、危险等级预测精度和相关系数对模型进行了定量评价。研究结果表明:所建立的BP-RF模型对煤与瓦斯突出危险等级预测的准确率为99.9%,对煤与瓦斯突出量的预测准确率为94.87%。所建立了BP-RF模型性能优于BP、RF、IFOA-GRNN模型,精度较高。同时,根据所建立模型对所有特征的敏感性进行了分析,研究认为煤层深度、厚度煤层、地质构造变化、煤层厚度变化、煤层倾角变化、软层厚度变化、煤层软塌现象、煤层坚固系数变化、钻井动力学现象、气体释放初始速度对模型预测结果最为敏感,在煤矿实际开采过程中必须要高度重视。 展开更多
关键词 煤与瓦斯突出 BP神经网络 随机森林 组合模型 敏感性分析
在线阅读 下载PDF
基于组合赋权优化的ES-ARIMA-BP神经网络交通事故预测研究 被引量:1
20
作者 刘尊青 单小曼 +3 位作者 辛宁 侯金超 姚亮 钟丽华 《现代电子技术》 北大核心 2024年第22期71-76,共6页
为提高交通事故模型的预测精度,更好地辨识交通事故在时间维度上的规律特性,基于CRITIC法和熵权法组合赋权,构建一种ES-ARIMA-BP神经网络组合预测模型,探究新疆地区交通事故在时间维度上的月度分布规律。首先,使用指数平滑法(ES)进行预... 为提高交通事故模型的预测精度,更好地辨识交通事故在时间维度上的规律特性,基于CRITIC法和熵权法组合赋权,构建一种ES-ARIMA-BP神经网络组合预测模型,探究新疆地区交通事故在时间维度上的月度分布规律。首先,使用指数平滑法(ES)进行预测,可减少数据间的噪声,并能捕捉时间序列数据中的季节性变动;其次,使用ARIMA模型进行预测,可捕捉数据中的线性部分、非季节性趋势和周期性波动;最后,为更好地应对数据中的复杂非线性及无周期性波动,引入BP神经网络进行预测。结果表明:构建基于组合赋权优化的ES-ARIMA-BP神经网络组合预测模型,平均绝对误差百分比(MAPE)仅为1.869%,决定系数(R^(2))高达0.982,较单一模型及单一赋权法下的组合模型预测误差率更低,拟合程度更好。组合预测模型以数据最大优化为思想基础,可有效克服单一模型的局限,同时采用组合赋权,使其能更好地适应不断变化的数据和环境,从而提高预测的准确度。 展开更多
关键词 交通事故预测 ES-ARIMA-BP 神经网络 组合模型 预测模型 赋权优化
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部