We implement optical pumping to prepare cold atoms in our prototype of the ST Rb space cold atom clock, which operates in the one-way mode. Several modifications are made on our previous physical and optical system. T...We implement optical pumping to prepare cold atoms in our prototype of the ST Rb space cold atom clock, which operates in the one-way mode. Several modifications are made on our previous physical and optical system. The effective atomic signal in the top detection zone is increased to 2.5 times with 87% pumping efficiency. The temperature of the cold atom cloud is increased by 1.4 μK. We study the dependences of the effective signal gain and pumping efficiency on the pumping laser intensity and detuning. The effects of σ transition are discussed. This technique may be used in the future space cold atom clocks.展开更多
The fidelity of the generated Schrodinger Cat state (SCS) of a single trapped ion in the Lamb-Dicke approximation is discussed. The results show that the fidelity significantly decreases with the values of Lamb-Dick...The fidelity of the generated Schrodinger Cat state (SCS) of a single trapped ion in the Lamb-Dicke approximation is discussed. The results show that the fidelity significantly decreases with the values of Lamb-Dicke parameter η and coherent state amplitude α increasing. For η= 0.20 and α = 3, the typical values of experimental parameters, the fidelity is rather low (3070). A scheme for generating the SCS is proposed without making the Lamb-Dike approximation in laser-ion interaction, and the fidelity of the generated SCS is about 99% for the typical values of experimental Lamb- Dicke parameters.展开更多
With all driving fields on Raman resonance, a tripod-type atomic system quickly evolves into a dark state decoupled from the lossy excited level. The dark state depends strongly on field Rabi frequencies, spontaneous ...With all driving fields on Raman resonance, a tripod-type atomic system quickly evolves into a dark state decoupled from the lossy excited level. The dark state depends strongly on field Rabi frequencies, spontaneous decay rates, and the initial atomic population in a complicated way. Analytical results reveal that it is a sixfold degenerate dark state with its three components superposed both coherently and incoherently due to population redistribution from spontaneous emission.展开更多
We study the superfuild ground state of ultracold fermions in optical lattices with a quadratic band touching. Examples are a checkerboard lattice around half filling and a kagome lattice above one third filling. Inst...We study the superfuild ground state of ultracold fermions in optical lattices with a quadratic band touching. Examples are a checkerboard lattice around half filling and a kagome lattice above one third filling. Instead of pairing between spin states, here we focus on pairing interactions between different orbital states. We find that our systems have only odd-parity (orbital) pairing instability while the singlet (orbital) pairing instability vanishes thanks to the quadratic band touching. In the mean field level, the ground state is found to be a chiral p-wave pairing superfluid (mixed with finite f-wave pairing order-parameters) which supports Majorana fermions.展开更多
基金Supported by the Fund from the Ministry of Science and Technology of China under Grant No 2013YQ09094304the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘We implement optical pumping to prepare cold atoms in our prototype of the ST Rb space cold atom clock, which operates in the one-way mode. Several modifications are made on our previous physical and optical system. The effective atomic signal in the top detection zone is increased to 2.5 times with 87% pumping efficiency. The temperature of the cold atom cloud is increased by 1.4 μK. We study the dependences of the effective signal gain and pumping efficiency on the pumping laser intensity and detuning. The effects of σ transition are discussed. This technique may be used in the future space cold atom clocks.
文摘The fidelity of the generated Schrodinger Cat state (SCS) of a single trapped ion in the Lamb-Dicke approximation is discussed. The results show that the fidelity significantly decreases with the values of Lamb-Dicke parameter η and coherent state amplitude α increasing. For η= 0.20 and α = 3, the typical values of experimental parameters, the fidelity is rather low (3070). A scheme for generating the SCS is proposed without making the Lamb-Dike approximation in laser-ion interaction, and the fidelity of the generated SCS is about 99% for the typical values of experimental Lamb- Dicke parameters.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10334010 and 10404009.
文摘With all driving fields on Raman resonance, a tripod-type atomic system quickly evolves into a dark state decoupled from the lossy excited level. The dark state depends strongly on field Rabi frequencies, spontaneous decay rates, and the initial atomic population in a complicated way. Analytical results reveal that it is a sixfold degenerate dark state with its three components superposed both coherently and incoherently due to population redistribution from spontaneous emission.
基金Project supported by the National Natural Science Foundation of China(Grant No.11675116)the Soochow University,China
文摘We study the superfuild ground state of ultracold fermions in optical lattices with a quadratic band touching. Examples are a checkerboard lattice around half filling and a kagome lattice above one third filling. Instead of pairing between spin states, here we focus on pairing interactions between different orbital states. We find that our systems have only odd-parity (orbital) pairing instability while the singlet (orbital) pairing instability vanishes thanks to the quadratic band touching. In the mean field level, the ground state is found to be a chiral p-wave pairing superfluid (mixed with finite f-wave pairing order-parameters) which supports Majorana fermions.