Various kinds of base oils were applied to cold rolling aluminum strips on a test mill for evaluationof the influences of these base oils,aromatics contents and viscosity of base oils on their lubricating performances...Various kinds of base oils were applied to cold rolling aluminum strips on a test mill for evaluationof the influences of these base oils,aromatics contents and viscosity of base oils on their lubricating performances and surface reflectivity of rolled strips at annealing. Results showed that low friction coefficient androlling force were obtained by using the normal paraffins,whereas their contaminations on the annealed stripsurface were the same as those of other saturated hydrocarbons. Aromatics in base oil affected the stir face reflectivity of annealed strips, but the decrease of aromatics in base oil was ineffective to improve rolled stripssurface quality when it is less than 1 %. Base oil viscosity has the great influences on the lubricating performances and surface reflectivity of annealed strips just in this condition.展开更多
Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and opt...Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and optimized remeshing function, especially for the large deformation. In order to use this function sufficiently, simulation of cold rolling involutes spline can be implemented indirectly. The relationship between die and workpiece, forming force and characteristic of deformation in the forming process of cold rolling involutes spline are analyzed and researched. Meanwhile, reliable proofs for the design of dies and deforming equipment are provided.展开更多
The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial directi...The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial direction,and the compensation model.Based on the rule of volume flow rate,the dynamic rolling process model was built.The work roll and backup roll were taken as elastic continuous bodies,the effect of shear and moment of inertia were taken into consideration,and then the dynamic model of rolls was built.The two models were coupled together,and the dynamic model of rolling mill was built.In the dynamic model,the thermal expansion of the rolls,the wear of the rolls and other related parameters can not be considered.In order to compensate the dynamic model,the coupled static model of rolls and strip was applied.Then,according to the inner relationship of these models,the dynamic model and the compensation model were coupled,and the dynamic model of rolling mill based on the strip flatness and thickness integrated control was built.The dynamic simulation of the rolling process was made,and the dynamic thickness and the dynamic flatness information were obtained.This model not only provides a theory basis for the virtual rolling,but also provides a platform for the application of advanced control theory.展开更多
The hydraulic roll-bending device was studied, which was widely used in modem cold rolling mills to regulate the strip flatness. The loaded roll gap crown mathematic model and the strip crown mathematic model of the r...The hydraulic roll-bending device was studied, which was widely used in modem cold rolling mills to regulate the strip flatness. The loaded roll gap crown mathematic model and the strip crown mathematic model of the reversing cold rolling process were established, and the deformation model of roll stack system of the 6-high 1 250 mm high crown (HC) reversing cold rolling mill was built by slit beam method. The simulation results show that, the quadratic component of strip crown decreases nearly linearly with the increase of the work roll bending force, when the shifting value of intermediate roll is determined by the rolling process. From the first pass to the fifth pass of reversing rolling process, the crown controllability of bending force is gradually weakened. Base on analyzing the relationship among the main factors associated with roll-bending force in reversing multi-pass rolling, such as strip width and rolling force, a preset mathematic model of bending force is developed by genetic algorithm. The simulation data demonstrate that the relative deviation of flatness criterions in each rolling pass is improved significantly and the mean relative deviation of all five passes is decreased from 25.1% to 1.7%. The model can keep good shape in multi-pass reversing cold rolling process with the high prediction accuracy and can be used to guide the production process.展开更多
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r...In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.展开更多
A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP...A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.展开更多
In order to know the cause of cracks in cold rolling of QSn6.5 0.1 copper alloy strip, a lot of experiments and analysis were done. The microstructure changes of QSn6.5 0.1 were investigated by means of metallurgical ...In order to know the cause of cracks in cold rolling of QSn6.5 0.1 copper alloy strip, a lot of experiments and analysis were done. The microstructure changes of QSn6.5 0.1 were investigated by means of metallurgical microscope. The morphology of cracks and surface defects were examined using scanning electron microscope. Macroscopic residual stresses produced in every process during manufacturing in the QSn6.5 0.1 strip were measured by X ray diffraction method and hole drilling method. The results show that the cracks in the QSn6.5 0.1 cold rolling strip were caused due to the derivation of metallurgical defects, such as SnO 2, S, fine looses,the inverse segregation unable to clear up when milling, and the accumulation of all kinds of resi dual stresses. When the accumulation of the residual stress reaches the material′s breaking strength, the cracks will be generated. Several measures to avoid the development of these kinds of cracks were put forward, such as: controlling the casting technology, improving homogenization annealing procedure (680 ℃/7 h) and milling quality(using the second milling when necessary), working out a more reasonable rolling technology to ensure intermediate annealing in time.展开更多
Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown o...Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling.展开更多
Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key formin...Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.展开更多
The pearlitic transformation and the deformation behavior of lamellar cementite after cold rolling in eutectoid steels Fe-0.76%C-0.137%Mn(mass fraction) were studied by means of Formastor-F (Full Automatic Transformat...The pearlitic transformation and the deformation behavior of lamellar cementite after cold rolling in eutectoid steels Fe-0.76%C-0.137%Mn(mass fraction) were studied by means of Formastor-F (Full Automatic Transformation Testing Instrument) and field emission scanning electronic microscopy (FESEM) observation. Fine and coarse pearlite were obtained in the eutectoid steels austenitized at 900℃ for 15min, then hold at 620℃ for 90 s and 690℃ for 7 h, respectively. The deformation behavior of cold rolled lamellar cementite could be classified as: cleavage fracture, inhomogeneous slip, fragmentation, thinning or necking, and homogeneous bending. The cementite lamellae with the thickness of more than 100 nm could be deformed plastically.展开更多
Electroshocking treatment(EST),an efficient and rapid material treatment method,promotes microstructure evolution and improves mechanical properties.This study incorporates EST into the conventional cold rolling-quenc...Electroshocking treatment(EST),an efficient and rapid material treatment method,promotes microstructure evolution and improves mechanical properties.This study incorporates EST into the conventional cold rolling-quenching tempering process of M50 steel and investigates the influence and mechanism of applying EST at different stages of the process on the microstructure and mechanical properties.Scanning electron microscope(SEM),transmission electron microscope(TEM),and X-ray diffraction(XRD)were used to characterize the effect of EST on microstructure.The results show that EST can refine the grains of M50(average reduction of 10.1%in grain size),homogenize the grain size distribution,reduce the dislocation density(20.9%in average),promote the dissolution of carbides in the matrix and distribute them more uniformly along the grain boundaries,resulting in the improvement of mechanical properties.The mechanical properties of the specimen with the process flow of rolling-quenching-tempering-electroshocking showed excellent performance,with an increase in hardness of 1.4%,tensile strength of 17.7%,and elongation at break of 24.3%as compared to the specimen without EST.The tensile properties of the specimen with the process flow of rolling electroshocking-quenching-tempering showed the best performance,with an increase in tensile strength of 30.0%and elongation at break of 30.7%as compared to the specimen without EST.展开更多
文摘Various kinds of base oils were applied to cold rolling aluminum strips on a test mill for evaluationof the influences of these base oils,aromatics contents and viscosity of base oils on their lubricating performances and surface reflectivity of rolled strips at annealing. Results showed that low friction coefficient androlling force were obtained by using the normal paraffins,whereas their contaminations on the annealed stripsurface were the same as those of other saturated hydrocarbons. Aromatics in base oil affected the stir face reflectivity of annealed strips, but the decrease of aromatics in base oil was ineffective to improve rolled stripssurface quality when it is less than 1 %. Base oil viscosity has the great influences on the lubricating performances and surface reflectivity of annealed strips just in this condition.
文摘Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and optimized remeshing function, especially for the large deformation. In order to use this function sufficiently, simulation of cold rolling involutes spline can be implemented indirectly. The relationship between die and workpiece, forming force and characteristic of deformation in the forming process of cold rolling involutes spline are analyzed and researched. Meanwhile, reliable proofs for the design of dies and deforming equipment are provided.
基金Project(E2012203177)supported by the Natural Science Foundation of Hebei Province,ChinaProject(2011BAF15B01)supported by the National Science and Technology Support Plan of China+1 种基金Project(E2006001038)supported by Great Natural Science Foundation of Hebei Province,ChinaProject(NECSR-201202)supported by Open Project Program of National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,China
文摘The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial direction,and the compensation model.Based on the rule of volume flow rate,the dynamic rolling process model was built.The work roll and backup roll were taken as elastic continuous bodies,the effect of shear and moment of inertia were taken into consideration,and then the dynamic model of rolls was built.The two models were coupled together,and the dynamic model of rolling mill was built.In the dynamic model,the thermal expansion of the rolls,the wear of the rolls and other related parameters can not be considered.In order to compensate the dynamic model,the coupled static model of rolls and strip was applied.Then,according to the inner relationship of these models,the dynamic model and the compensation model were coupled,and the dynamic model of rolling mill based on the strip flatness and thickness integrated control was built.The dynamic simulation of the rolling process was made,and the dynamic thickness and the dynamic flatness information were obtained.This model not only provides a theory basis for the virtual rolling,but also provides a platform for the application of advanced control theory.
基金Project(20050311890) supported by the Science and Technology Development Foundation of University of Science and Technology Beijing,China
文摘The hydraulic roll-bending device was studied, which was widely used in modem cold rolling mills to regulate the strip flatness. The loaded roll gap crown mathematic model and the strip crown mathematic model of the reversing cold rolling process were established, and the deformation model of roll stack system of the 6-high 1 250 mm high crown (HC) reversing cold rolling mill was built by slit beam method. The simulation results show that, the quadratic component of strip crown decreases nearly linearly with the increase of the work roll bending force, when the shifting value of intermediate roll is determined by the rolling process. From the first pass to the fifth pass of reversing rolling process, the crown controllability of bending force is gradually weakened. Base on analyzing the relationship among the main factors associated with roll-bending force in reversing multi-pass rolling, such as strip width and rolling force, a preset mathematic model of bending force is developed by genetic algorithm. The simulation data demonstrate that the relative deviation of flatness criterions in each rolling pass is improved significantly and the mean relative deviation of all five passes is decreased from 25.1% to 1.7%. The model can keep good shape in multi-pass reversing cold rolling process with the high prediction accuracy and can be used to guide the production process.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(N110307001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.
基金Foundation item: Project(2009AA04Z143) supported by the National High Technology Research and Development Program of ChinaProject (E2011203004) supported by Natural Science Foundation of Hebei Province, ChinaProjects(2011BAF15B03, 2011BAF15B02) supported by the National Science Plan of China
文摘A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.
文摘In order to know the cause of cracks in cold rolling of QSn6.5 0.1 copper alloy strip, a lot of experiments and analysis were done. The microstructure changes of QSn6.5 0.1 were investigated by means of metallurgical microscope. The morphology of cracks and surface defects were examined using scanning electron microscope. Macroscopic residual stresses produced in every process during manufacturing in the QSn6.5 0.1 strip were measured by X ray diffraction method and hole drilling method. The results show that the cracks in the QSn6.5 0.1 cold rolling strip were caused due to the derivation of metallurgical defects, such as SnO 2, S, fine looses,the inverse segregation unable to clear up when milling, and the accumulation of all kinds of resi dual stresses. When the accumulation of the residual stress reaches the material′s breaking strength, the cracks will be generated. Several measures to avoid the development of these kinds of cracks were put forward, such as: controlling the casting technology, improving homogenization annealing procedure (680 ℃/7 h) and milling quality(using the second milling when necessary), working out a more reasonable rolling technology to ensure intermediate annealing in time.
基金Project(2007BAF02B12)supported by the National Science Technology Support Program of ChinaProjects(E2011203090,E2012203028)supported by the Natural Science Foundation of Hebei Province,China
文摘Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling.
基金Project(2011CB706605)supported by the National Basic Research Program of ChinaProject(IRT13087)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(2012-86)supported by the Grant from the High-end Talent Leading Program of Hubei Province,China
文摘Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.
基金Supported by National Natural Science Foundation of China(60474058,60604026)National High Technology Research and Development Program of China(863 Program)(2007AA04Z156)
文摘The pearlitic transformation and the deformation behavior of lamellar cementite after cold rolling in eutectoid steels Fe-0.76%C-0.137%Mn(mass fraction) were studied by means of Formastor-F (Full Automatic Transformation Testing Instrument) and field emission scanning electronic microscopy (FESEM) observation. Fine and coarse pearlite were obtained in the eutectoid steels austenitized at 900℃ for 15min, then hold at 620℃ for 90 s and 690℃ for 7 h, respectively. The deformation behavior of cold rolled lamellar cementite could be classified as: cleavage fracture, inhomogeneous slip, fragmentation, thinning or necking, and homogeneous bending. The cementite lamellae with the thickness of more than 100 nm could be deformed plastically.
基金Project(G202403)supported by the Open Foundation of The State Key Laboratory of Refractories and Metallurgy,ChinaProject(2022CFB378)supported by the Natural Science Foundation of Hubei Province,China+2 种基金Project(B 17034)supported by 111 Project,ChinaProject(IRT_17R83)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(P2024-026)supported by the Open Foundation of The State Key Laboratory of Materials Processing and Die&Mould Technology,China。
文摘Electroshocking treatment(EST),an efficient and rapid material treatment method,promotes microstructure evolution and improves mechanical properties.This study incorporates EST into the conventional cold rolling-quenching tempering process of M50 steel and investigates the influence and mechanism of applying EST at different stages of the process on the microstructure and mechanical properties.Scanning electron microscope(SEM),transmission electron microscope(TEM),and X-ray diffraction(XRD)were used to characterize the effect of EST on microstructure.The results show that EST can refine the grains of M50(average reduction of 10.1%in grain size),homogenize the grain size distribution,reduce the dislocation density(20.9%in average),promote the dissolution of carbides in the matrix and distribute them more uniformly along the grain boundaries,resulting in the improvement of mechanical properties.The mechanical properties of the specimen with the process flow of rolling-quenching-tempering-electroshocking showed excellent performance,with an increase in hardness of 1.4%,tensile strength of 17.7%,and elongation at break of 24.3%as compared to the specimen without EST.The tensile properties of the specimen with the process flow of rolling electroshocking-quenching-tempering showed the best performance,with an increase in tensile strength of 30.0%and elongation at break of 30.7%as compared to the specimen without EST.