期刊文献+
共找到30,180篇文章
< 1 2 250 >
每页显示 20 50 100
一种基于EMD-LightGBM模型的地铁隧道盾构姿态预测方法
1
作者 冷伍明 吴卓霖 +3 位作者 袁立刚 梁琳 刘涛墨 岳健 《哈尔滨工业大学学报》 北大核心 2025年第7期96-107,共12页
针对地铁隧道盾构姿态难以控制的问题,以长春某隧道工程为例,基于现场实测数据,构建了一个融合经验模态分解(empirical mode decomposition,EMD)和轻量级梯度提升机(light gradient boosting machine,LightGBM)的盾构姿态预测模型(EMD-L... 针对地铁隧道盾构姿态难以控制的问题,以长春某隧道工程为例,基于现场实测数据,构建了一个融合经验模态分解(empirical mode decomposition,EMD)和轻量级梯度提升机(light gradient boosting machine,LightGBM)的盾构姿态预测模型(EMD-LightGBM)。首先,通过特征重要性和相关性分析筛选原始数据集特征。然后,利用EMD技术将数据分解为多个平稳子序列,并组成新数据集。最后,通过该新数据集拟合训练EMD-LightGBM来实现盾构姿态的预测,并且比较了该模型与单纯的LightGBM及融合EMD的反向传播神经网络(backpropagation neural network,BPNN)的预测效果。通过预测精度和预测稳定性两种评价体系来验证EMD-LightGBM模型的优良性能。结果表明:与LightGBM和EMD-BPNN相比,EMD-LightGBM在盾构姿态偏差预测折线图中的表现最佳,其平均绝对误差(mean absolute error,E MA)和均方根误差(root mean square error,E RMS)最大分别为2.89 mm和4.13 mm,决定系数R 2最小值为0.95;同时,EMD-LightGBM的预测平均绝对误差E MA和均方误差(mean square error,E MS)的95%置信区间最大值分别为3.5 mm与25.6 mm 2,结合其预测值的绝对误差(absolute error,E A)和平方误差(square error,E S)的良好频数分布,都说明了EMD-LightGBM在预测盾构姿态时的高精度和稳定性。研究成果可为类似工程的盾构姿态控制提供一种理论方法。 展开更多
关键词 地铁隧道 盾构 姿态预测 经验模态分解 轻量级梯度提升机
在线阅读 下载PDF
LightDiffu-DCE:基于光照强度扩散的低光照图像增强
2
作者 闫光辉 吴佰靖 马龙 《光学精密工程》 北大核心 2025年第7期1114-1129,共16页
针对低光照图像中不同光源的光照强度分布不均,在图像增强时造成轮廓特征丢失及效果不自然的问题,提出一种基于光照强度扩散的低光照图像增强方法(Light Diffusion based Zero-DCE Image Enhancement Algorithm,LightDiffu-DCE)。为增... 针对低光照图像中不同光源的光照强度分布不均,在图像增强时造成轮廓特征丢失及效果不自然的问题,提出一种基于光照强度扩散的低光照图像增强方法(Light Diffusion based Zero-DCE Image Enhancement Algorithm,LightDiffu-DCE)。为增强模型的泛化能力,提出了基于光源光照强度建模的扩散模型,以生成不同光照强度的训练数据集。设计了边缘特征融合的深度曲线估计网络,能够提取更丰富的低光照图像的多尺度轮廓和细节特征,提升对光照强度估计的准确性。为恢复出光照更加自然的图像,融合大气光估计来计算不同图像区域的光照强度,实现了对光增强曲线和光增强系数的动态微调。在无参考数据集ExDark和有参考数据集LOL上,使用6种评价指标进行实验分析。实验结果表明,相较于基准方法,LightDiffu-DCE在ExDark上的无参考评价指标NIQE,PIQE和RISQ上分别提升了约8.35%,6.20%和21.83%,在LOL数据集上的有参考评价指标PSNR,SSIM和RMSE提升了约12.12%,4.76%和49.89%。该方法可以有效增强低光照图像,且恢复出的低光照图像轮廓更加清晰,色彩鲜明且效果更自然。 展开更多
关键词 计算机视觉 扩散模型 低光照增强 边缘特征 深度曲线估计网络
在线阅读 下载PDF
基于Light-GBM算法的地震动显著持时预测模型
3
作者 崔铭钊 公茂盛 +3 位作者 左占宣 赵一男 贾佳 张孔 《振动与冲击》 北大核心 2025年第16期185-192,共8页
地震动持时对地震结构反应有显著影响,因此对考虑持时效应的工程结构抗震设计和区域地震危险性分析具有重要意义。该研究提出了一种基于轻量级梯度提升机(light gradient boosting machine,Light-GBM)算法的地震动显著持时预测模型,基于... 地震动持时对地震结构反应有显著影响,因此对考虑持时效应的工程结构抗震设计和区域地震危险性分析具有重要意义。该研究提出了一种基于轻量级梯度提升机(light gradient boosting machine,Light-GBM)算法的地震动显著持时预测模型,基于NGA-West2数据库,筛选了其中15541条地震动记录并计算其显著持时,随后通过特征重要性筛选输入参数并利用贝叶斯优化方法调整模型超参数,最终构建了地震动显著持时的预测模型,并与其他传统模型和深度学习模型对比,从而对模型的准确性和鲁棒性进行验证。结果表明,所建立的地震动显著持时预测模型具有良好预测性能、极高的计算效率和通用性,结果可供地震动持时预测及地震危险性分析等工作参考。 展开更多
关键词 地震动持时 预测模型 轻量级梯度提升机(light-GBM)算法 显著持时 机器学习
在线阅读 下载PDF
面向肺部肿瘤分类的跨模态Light-3Dformer模型
4
作者 周涛 牛玉霞 +2 位作者 叶鑫宇 刘隆 陆惠玲 《电子学报》 北大核心 2025年第3期951-961,共11页
基于深度学习的三维多模态正电子发射型断层扫描/计算机断层扫描(Positron Emission Tomography/Computed Tomography,PET/CT)肺部肿瘤识别是一个重要的研究方向.肺部肿瘤病灶的空间形状不规则、与周围组织边界模糊,导致模型难以充分提... 基于深度学习的三维多模态正电子发射型断层扫描/计算机断层扫描(Positron Emission Tomography/Computed Tomography,PET/CT)肺部肿瘤识别是一个重要的研究方向.肺部肿瘤病灶的空间形状不规则、与周围组织边界模糊,导致模型难以充分提取肿瘤特征,且模型在三维任务中需要较高的计算复杂度.针对上述问题,本文提出一种跨模态Light-3Dformer的三维肺部肿瘤识别模型.本文的主要创新工作有以下几个方面.首先,采用主、辅网络结构,其中主干网络提取PET/CT图像特征,辅助网络提取PET图像和CT图像特征,并采用轻量化跨模态协同注意力实现多模态特征增强和交互式学习.其次,设计Light-3Dformer模块,在该模块中,将Transformer的2次矩阵乘法操作更新为全局注意力机制Lightformer的线性元素乘法操作;设计级联Lightformer结构,其输出特征图和最初的输入特征图融合,通过并行和融合更多的深浅层特征,可以实现轻量化和提取丰富的梯度信息;设计无参数的注意力,该机制能从通道、空间和断层3个方面增强肺部肿瘤特征提取能力.再次,设计轻量化跨模态协同注意力模块(Light Cross-modal Collaborative Attention Module,LCCAM),该模块能充分学习三维多模态影像的跨模态优势信息,对深浅层特征进行交互式学习.最后,进行消融实验和对比实验,在自建的肺部肿瘤三维多模态数据集中,本文模型在计算量和运行时间最优的前提下,准确率和曲线下面积(Area Under the Curve,AUC)值分别达到90.19%和89.81%,与3D-SwinTransformer-S模型相比,参数量降低117倍,计算量降低400倍.实验结果表明:本文模型能更好地提取肺部肿瘤病灶的多模态信息,这为深度学习三维模型轻量化和多模态交互提供了新思路. 展开更多
关键词 肺部肿瘤 多模态图像 Transformer light-3Dformer 轻量化跨模态协同注意力
在线阅读 下载PDF
Simulation of light environment in a serrated photovoltaic greenhouse and optimization of daylighting roofs based on Design Builder
5
作者 LIU Jian WU Xuyong +2 位作者 WANG Baolong WU Qingsen TIAN Libo 《农业工程学报》 北大核心 2025年第7期211-221,共11页
In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still rel... In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions. 展开更多
关键词 photovoltaic greenhouse annual average daily light integral greenhouse design parameters DAYlightING tropical regions
在线阅读 下载PDF
近红外光谱结合LightGBM的含油污泥多环芳烃含量快速定量分析方法研究
6
作者 向宇 李茂刚 +2 位作者 闫春华 张天龙 李华 《分析测试学报》 北大核心 2025年第8期1602-1611,共10页
该研究利用近红外(NIR)技术结合轻量级梯度提升(LightGBM)预测含油污泥中菲(Phe)和荧蒽(Flt)的含量。首先对模型参数进行优化,然后对样品近红外光谱数据进行预处理,并通过竞争性自适应重加权算法(CARS)、互信息(MI)、鲸鱼优化算法(WOA)... 该研究利用近红外(NIR)技术结合轻量级梯度提升(LightGBM)预测含油污泥中菲(Phe)和荧蒽(Flt)的含量。首先对模型参数进行优化,然后对样品近红外光谱数据进行预处理,并通过竞争性自适应重加权算法(CARS)、互信息(MI)、鲸鱼优化算法(WOA)对光谱特征变量进行筛选,利用最优输入变量构建模型,最后将LightGBM与偏最小二乘(PLS)、随机森林(RF)、支持向量机(SVM)模型进行对比。结果表明,对于菲,基于Nor-SG-WOA-LightGBM建立的模型最佳,预测决定系数(R^(2)_(p))和预测均方根误差(RMSE_(p))分别为0.9952和0.2426 mg/g;对于荧蒽,基于SNV-SG-CARS-LightGBM建立的模型最佳,R^(2)_(p)和RMSE_(p)分别为0.9951和0.2452 mg/g。该方法为含油污泥中多环芳烃(PAHs)的分析提供了一定的技术参考。 展开更多
关键词 近红外光谱 轻量级梯度提升 含油污泥 多环芳烃
在线阅读 下载PDF
Machine learning models for optimization, validation, and prediction of light emitting diodes with kinetin based basal medium for in vitro regeneration of upland cotton (Gossypium hirsutum L.)
7
作者 ÖZKAT Gözde Yalçın AASIM Muhammad +2 位作者 BAKHSH Allah ALI Seyid Amjad ÖZCAN Sebahattin 《Journal of Cotton Research》 2025年第2期228-241,共14页
Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is inf... Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency. 展开更多
关键词 Machine learning COTTON In vitro regeneration light emitting diodes OPTIMIZATION KINETIN
在线阅读 下载PDF
Femtosecond laser modulated into Bessel beam by spatial light modulator for Fresnel zone plate processing
8
作者 DUAN Lian ZHOU Fang +3 位作者 KONG De-jian ZHANG Fan SUN Xiao-yan DUAN Ji-an 《Journal of Central South University》 2025年第2期469-482,共14页
Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,... Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells. 展开更多
关键词 femtosend laser Fresnel zone plate spatial light modulator Bessel beam GAAS
在线阅读 下载PDF
Hypersonic glide vehicle trajectory prediction based on frequency enhanced channel attention and light sampling-oriented MLP network
9
作者 Yuepeng Cai Xuebin Zhuang 《Defence Technology(防务技术)》 2025年第4期199-212,共14页
Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv... Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well. 展开更多
关键词 Hypersonic glide vehicle Trajectory prediction Frequency enhanced channel attention light sampling-oriented MLP network
在线阅读 下载PDF
耦合二次模态分解和优化LightGBM的大坝变形预测模型
10
作者 孔颢 丁勇 李登华 《大地测量与地球动力学》 北大核心 2025年第11期1171-1179,共9页
提出一种结合二次模态分解与蝴蝶优化算法(BOA)优化轻量梯度提升机(LightGBM)的大坝变形预测模型。首先,利用自适应噪声完备集合经验模态分解(CEEMDAN)对训练集数据进行分解并计算分解子序列的复合熵;然后,通过K-means聚类算法将分解子... 提出一种结合二次模态分解与蝴蝶优化算法(BOA)优化轻量梯度提升机(LightGBM)的大坝变形预测模型。首先,利用自适应噪声完备集合经验模态分解(CEEMDAN)对训练集数据进行分解并计算分解子序列的复合熵;然后,通过K-means聚类算法将分解子序列分为高、低频两类,对高频信号数据进行变分模态分解(VMD);最后,使用BOA优化的LightGBM模型进行预测。实例表明,该方法能有效处理变形数据,提高数据平稳性,且预测精度明显优于传统方法,nMAPE、MSE、MAE指标分别降低16.2%~22.5%、16.8%~28.1%、16.2%~22.5%。 展开更多
关键词 二次模态分解 高低频信号划分 蝴蝶优化算法 轻量梯度提升机 变形预测
在线阅读 下载PDF
基于BO-LightGBM算法的XLPE配电电缆绝缘状态评估
11
作者 罗正均 叶刚 +3 位作者 周箩鱼 李涛 陈楠 张志熙 《绝缘材料》 北大核心 2025年第3期131-140,共10页
为提升电缆绝缘状态评估的精度,本文提出了一种基于贝叶斯优化(BO)算法与轻量级梯度提升机(LightGBM)算法的电缆绝缘状态评估方法。首先将数据集中所有特征进行组合,形成不同的特征子集,通过遍历所有的特征子集,找到五折交叉验证的准确... 为提升电缆绝缘状态评估的精度,本文提出了一种基于贝叶斯优化(BO)算法与轻量级梯度提升机(LightGBM)算法的电缆绝缘状态评估方法。首先将数据集中所有特征进行组合,形成不同的特征子集,通过遍历所有的特征子集,找到五折交叉验证的准确率最高所对应的特征组合,完成对输入特征的筛选。然后使用BO算法对LightGBM中的7个超参数进行寻优。最后利用本文所提出的BO-LightGBM算法完成对电缆绝缘状态的评估。结果表明:本文提出的特征子集法与主成分分析法和互信息筛选法相比能更好地提升模型表现;经过BO算法优化后,LightGBM模型的精度能得到进一步的提升,与粒子群优化算法(PSO)和遗传算法优化(GA)相比,BO算法的计算效率能在几乎相同的精度下分别提升约80%和86.9%;与其他常用机器学习算法进行对比,本文模型的相关性能指标均为最优。 展开更多
关键词 XLPE电缆 状态评估 机器学习 贝叶斯优化算法 轻量级梯度提升机算法
在线阅读 下载PDF
基于PSO-LightGBM模型的边坡稳定性预测研究
12
作者 张仕杰 张煜 张宁 《防灾减灾工程学报》 北大核心 2025年第5期1233-1240,共8页
边坡稳定性的准确预测对降低边坡失稳风险具有重要意义。为高效且准确地预测边坡稳定性,提出了一种基于粒子群(PSO)优化轻量级梯度提升机(LightGBM)的边坡稳定性预测模型,即PSO-LightGBM模型。该模型首先采用粒子群算法优化LightGBM模... 边坡稳定性的准确预测对降低边坡失稳风险具有重要意义。为高效且准确地预测边坡稳定性,提出了一种基于粒子群(PSO)优化轻量级梯度提升机(LightGBM)的边坡稳定性预测模型,即PSO-LightGBM模型。该模型首先采用粒子群算法优化LightGBM模型中的重要参数,在实际工程应用中,降低了LightGBM模型参数所产生的影响。然后采用优化后的LightGBM模型对边坡稳定性进行分类预测。选取K近邻(KNN)、支持向量机(SVM)、LightGBM、网格搜索优化LightGBM(GS-LightGBM)以及遗传优化LightGBM(GA-LightGBM)作为对比模型,并采用准确率、精确率、召回率与F1分数作为各模型预测性能的评价指标,并通过混淆矩阵可视化各模型的分类结果。基于PSO-LightGBM模型的特征重要性分析,量化了各因素在边坡稳定性预测中的相对重要性。研究结果表明,在测试集上PSO-LightGBM模型的各项评价指标上均显著优于其他对比模型,表现出较强的分类预测性能与泛化能力。通过特征重要性分析,影响边坡稳定性的因素从大到小依次为:坡角、坡高、内聚力、内摩擦角、土体重度与孔隙水压力。本研究为边坡稳定性的准确预测提供了一种新方法,对边坡工程安全设计与风险评估具有重要参考意义。 展开更多
关键词 边坡稳定性 机器学习 轻量级梯度提升机(lightGBM) 粒子群算法
在线阅读 下载PDF
一种基于LightGBM的UWB非视距识别方法
13
作者 李乾 刘卓伦 +3 位作者 孙晓云 陈勇 宋士济 张醒龙 《电讯技术》 北大核心 2025年第11期1766-1772,共7页
针对超宽带非视距(Non-Line-of-Sight,NLOS)识别中最优特征子集选取与模型参数优化问题,提出了一种基于轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)的交叉验证递归特征消除算法与Optuna参数调优相结合的NLOS识别方法... 针对超宽带非视距(Non-Line-of-Sight,NLOS)识别中最优特征子集选取与模型参数优化问题,提出了一种基于轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)的交叉验证递归特征消除算法与Optuna参数调优相结合的NLOS识别方法。首先通过递归特征消除加交叉验证算法分析选取首径信号与总信号接收功率差值、噪声最大值等6个重要特征作为最优特征子集,之后使用Optuna调参框架优化LightGBM模型超参数。采集视距与非视距特征数据,使用支持向量机、极限梯度提升算法和参数优化后的LightGBM等模型进行训练与测试,结果表明,所选取特征具有良好区分性,参数优化后的LightGBM模型识别准确率达95.28%。 展开更多
关键词 超宽带非视距识别 轻量级梯度提升机(lightGBM) 交叉验证递归特征消除算法(RFECV) 超参数优化
在线阅读 下载PDF
雷公藤多苷片对IgA肾病大鼠LIGHT-HVEM/LTβR通路的影响 被引量:3
14
作者 王旭 方虹 +6 位作者 樊艳敏 季晗舒 宋珂 陈晨晨 卜继常 丁樱 宋纯东 《中国药理学通报》 CAS CSCD 北大核心 2024年第12期2277-2282,共6页
目的 基于炎症相关通路探讨雷公藤多苷片对IgA肾病大鼠肾脏的作用机制。方法 雄性SPF级SD大鼠,随机分为空白组、造模组。造模组采用联合“牛血清白蛋白+四氯化碳+脂多糖”建立IgA肾病大鼠模型。造模成功的大鼠随机分为模型组、泼尼松组... 目的 基于炎症相关通路探讨雷公藤多苷片对IgA肾病大鼠肾脏的作用机制。方法 雄性SPF级SD大鼠,随机分为空白组、造模组。造模组采用联合“牛血清白蛋白+四氯化碳+脂多糖”建立IgA肾病大鼠模型。造模成功的大鼠随机分为模型组、泼尼松组、雷公藤多苷片组,于第13周开始治疗组灌胃给药,给药4周后留取大鼠24 h尿液、血液、肾组织并检测尿红细胞数、24 h-UTP、BUN、Scr;ELISA检测血清IL-1β、TNF-α水平;HE染色观察各组大鼠肾组织病理学变化;Western blot及RT-PCR检测大鼠肾组织LIGHT、HVEM、LTβR蛋白及其mRNA的表达。结果 雷公藤多苷片明显降低IgA肾病大鼠尿红细胞数、24 h-UTP、BUN、Scr水平,改善肾组织病理,降低血清炎症因子IL-1β、TNF-α水平,降低肾组织中LIGHT、HVEM、LTβR蛋白及其mRNA表达水平。结论 雷公藤多苷片可能通过下调LIGHT-HVEM/LTβR信号通路,抑制免疫反应,减少炎症因子释放,从而减轻炎症反应,降低尿红细胞及尿蛋白,改善肾脏病理损伤,保护肾功能。 展开更多
关键词 雷公藤多苷片 IGA肾病 light-HVEM/LTβR 炎症 免疫反应 保护
在线阅读 下载PDF
基于CEEMDAN-VMD-TCN-lightGBM模型的水质预测研究 被引量:3
15
作者 项新建 张颖超 +3 位作者 许宏辉 厉阳 王世乾 郑永平 《中国农村水利水电》 北大核心 2024年第3期86-95,共10页
针对目前水质预测模型中因为数据本身的复杂性、在信号处理过程中存在的噪声干扰以及分解深度不够导致单一分解难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解的水质预测模型。该模型采用完全自适应噪声集合经验模态分解(CEE... 针对目前水质预测模型中因为数据本身的复杂性、在信号处理过程中存在的噪声干扰以及分解深度不够导致单一分解难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解的水质预测模型。该模型采用完全自适应噪声集合经验模态分解(CEEMDAN)对原始数据进行分解,再利用变分模态分解(VMD)对熵值最高的模态分量进行二次分解,最终将处理后的时间序列输入到TCN-lightGBM多特征预测模型中。同时,采用麻雀算法(SSA)对预测模型进行优化。以山东省玉符河水质为例,本模型的均方根误差(RMSE)是0.1053,平均绝对误差(MAE)是0.0815,决定系数(R2)是0.9471,与GRU、LSTM、LightGBM、TCN等当下较为流行的模型的预测指标进行比较。结果显示,在R2上本模型提升了53.04%、70.41%、66.07%、65.20%等,在RMSE上减少了62.76%、65.50%、64.93%、64.80%等,在MAE上降低了62.76%、66.24%、63.80%、65.24%等。由此可知,基于CEEMDAN-VMD-TCN-lightGBM的模型具有更好的预测性能、泛化能力和捕捉信号非线性特征的能力。 展开更多
关键词 二次分解 TCN lightGBM 多特征预测 水质预测 麻雀算法
在线阅读 下载PDF
基于Light-Resnet卷积神经网络的电力设备监测数值识别算法 被引量:4
16
作者 孔志恒 谭冲 +2 位作者 唐培耀 胡成博 郑敏 《中国电力》 CSCD 北大核心 2024年第8期206-213,共8页
在智能电网中,精确监测输电、配电及供电关键设备的运行状态对在线运维至关重要。面对人工抄录和巡检的低效,以及监测装置数字化升级的复杂安装、高成本和长周期等挑战,结合图像采集装置与图像处理技术,根据计算资源合理分配任务,开发... 在智能电网中,精确监测输电、配电及供电关键设备的运行状态对在线运维至关重要。面对人工抄录和巡检的低效,以及监测装置数字化升级的复杂安装、高成本和长周期等挑战,结合图像采集装置与图像处理技术,根据计算资源合理分配任务,开发了一种基于Light-Resnet数值识别算法,该算法通过D-Add损失函数优化网络训练过程,实现电力设备监测数据的远程读取。实验表明:Light-Resnet以6090的参数量在MNIST数据集获得了98.8%的严格准确率,结合边端协同机制,终端侧能耗降低了20.73%。这一算法不仅证明了自身在资源受限环境下的适应性和高效性,同时D-Add损失函数的设计也显著提升了网络的准确度。 展开更多
关键词 light-resnet D-add 边端协同机制 数值识别 智能电网
在线阅读 下载PDF
融合LightGBM的ResNeXt气象目标细粒度识别方法 被引量:2
17
作者 欧阳彤 汪玲 +1 位作者 朱岱寅 李勇 《系统工程与电子技术》 EI CSCD 北大核心 2024年第12期4034-4043,共10页
为精确识别气象目标与混杂其中的非气象目标,提出一种融合轻量级梯度提升机(light gradient boosting machine,LightGBM)与残差网络的残差网络(residual network of residual network:next generation,ResNeXt)的气象目标识别方法。首先... 为精确识别气象目标与混杂其中的非气象目标,提出一种融合轻量级梯度提升机(light gradient boosting machine,LightGBM)与残差网络的残差网络(residual network of residual network:next generation,ResNeXt)的气象目标识别方法。首先,制作块状样本数据集,以此数据集为驱动,建立以ResNeXt为基础的气象目标识别网络模型,实现以块状数据样本为识别单位的气象目标粗粒度识别,识别精度可达99.6%以上;然后,再将此粗粒度结果与参考数据的差异值纳入LightGBM分类器,得到以雷达采样单元为识别单位的细粒度识别结果。结合实际观测数据,证明所提方法融合了LightGBM细粒度识别与ResNeXt高精度识别的能力,能够完成气象目标与杂波的判别,判别结果与参考结果高度一致。结合实际观测数据,证明所提方法融合了LightGBM细粒度识别与ResNeXt高精度识别的能力,能够完成气象目标与杂波的判别,判别结果与参考结果高度一致。 展开更多
关键词 气象雷达 气象目标识别 残差网络 轻量级梯度提升机 融合 深度学习
在线阅读 下载PDF
基于LightGBM模型的甘肃省临夏县滑坡易发性评价 被引量:3
18
作者 何哲 石玉玲 +2 位作者 李富春 贾卓龙 晏长根 《水资源与水工程学报》 CSCD 北大核心 2024年第1期197-205,216,共10页
甘肃省临夏县地质环境复杂,滑坡灾害发育,对当地居民生产生活造成严重威胁,亦对工程建设的开展造成一定阻碍,因此,选取高效准确的机器学习方法对临夏县进行滑坡易发性评价具有重大意义。首先依据遥感影像和野外勘察资料,选取了1718处滑... 甘肃省临夏县地质环境复杂,滑坡灾害发育,对当地居民生产生活造成严重威胁,亦对工程建设的开展造成一定阻碍,因此,选取高效准确的机器学习方法对临夏县进行滑坡易发性评价具有重大意义。首先依据遥感影像和野外勘察资料,选取了1718处滑坡样本,遴选了滑坡灾变的16种影响因子并建立滑坡影响因子评价体系;再结合预测精度和运行时间等指标对比了轻量级梯度提升机(LightGBM)模型与主流机器学习模型的性能;最后利用混淆矩阵分级方法进行了基于LightGBM模型的临夏县滑坡易发性评价。结果表明:临夏县重要滑坡影响因子为地表植被和地形地貌因子,其中土地覆盖为最主要影响因子;LightGBM模型预测精度高达0.931,且运行速度仅为11.7 s,既能保证高精度又极大提升了运行效率;在抽稀后的数据集上,LightGBM模型的预测表现、校准程度和分级结果均优于随机森林(RF)模型;混淆矩阵分级法的较高和高易发区内滑坡分布更为集中,在14.94%的区域内分布着86.86%的滑坡灾害点。滑坡易发性评价结果较好地反映了研究区内滑坡分布发育情况,可为当地工程建设及防灾减灾工作提供一定指导。 展开更多
关键词 滑坡 易发性评价 轻量级梯度提升机 机器学习 甘肃省临夏县
在线阅读 下载PDF
基于VMD与优化LightGBM的混凝土拱坝变形预测 被引量:2
19
作者 董志豪 赵二峰 +3 位作者 刘峰 宋桂华 吴斌庆 黎祎 《水电能源科学》 北大核心 2024年第8期132-136,共5页
变形是反映混凝土拱坝安全运行状态的重要指标,因此变形预测模型的研究对拱坝结构健康评价具有重要意义。为充分挖掘拱坝变形监测数据的有效信息,提高监控模型的预测精度,提出一种基于变分模态分解与优化LightGBM的混凝土拱坝变形预测... 变形是反映混凝土拱坝安全运行状态的重要指标,因此变形预测模型的研究对拱坝结构健康评价具有重要意义。为充分挖掘拱坝变形监测数据的有效信息,提高监控模型的预测精度,提出一种基于变分模态分解与优化LightGBM的混凝土拱坝变形预测模型。首先,采用VMD将变形实测数据分解为多个模态分量;其次,引入改进灰狼算法与LightGBM相结合建立混凝土拱坝变形预测模型;随后,对模态分量进行单独建模和预测,最后叠加以得到最终的预测结果。工程实例分析表明,通过有效地分解重构,构建的变形预测模型具有较高的预测精度和泛化性能。 展开更多
关键词 变形预测 变分模态分解 改进灰狼算法 轻量梯度提升机
在线阅读 下载PDF
基于DGA与TPE-LightGBM的变压器故障诊断 被引量:6
20
作者 杨金鑫 廖才波 +3 位作者 胡雄 朱文清 张旭 刘邦 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期70-77,共8页
油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机... 油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机(light gradient boosting machine,LightGBM)的变压器故障诊断方法。首先,建立包含油中气体比值、编码等16维DGA特征集合,采用最小绝对收缩和选择(least absolute shrinkage and selection opera-tor,LASSO)算法选择用于变压器故障诊断的有效特征量;其次,构建基于LightGBM的变压器故障诊断方法,并引入TPE算法对LightGBM诊断模型参数进行优化,形成最优故障诊断模型;最后,选用精确度、召回率和F1分数等评价指标对所提诊断模型性能进行评估。研究结果表明,TPE-LightGBM的平均准确率为90.23%,其诊断精度及鲁棒性均优于RF和XGBoost等算法。同时,与现场常用的三比值法进行对比,所提方法的准确性和可靠性均有显著提升。该方法可有效提升电力变压器的智能运维水平。 展开更多
关键词 变压器 油中溶解气体 故障诊断 树结构概率密度估计 LASSO算法 轻量级梯度提升机
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部