期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Coded aperture compressive imaging array applied for surveillance systems
1
作者 Jing Chen Yongtian Wang Hanxiao Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期1019-1028,共10页
This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detectio... This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detection algorithm in video using compressive image data are developed. Coded masks with random Gaussian, Toeplitz and random binary are utilized to simulate the compressive image respectively. For compressive images, a mixture of the Gaussian distribution is applied to the compressed image field to model the background. A simple threshold test in compressive sampling image is used to declare motion objects. Foreground image retrieval from underdetermined measurement using the total variance optimization algorithm is explored. The signal-to-noise ratio (SNR) is employed to evaluate the image quality recovered from the compressive sampling signals, and receiver operation characteristic (ROC) curves are used to quantify the performance of the motion detection algorithm. Experimental results demonstrate that the low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz mask, motion detection algorithms using the random binary phase mask can yield better detection results. However using the random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed images. 展开更多
关键词 compressive imaging coded aperture compressive sensing motion detection
在线阅读 下载PDF
Deep plug-and-play self-supervised neural networks for spectral snapshot compressive imaging
2
作者 ZHANG Xing-Yu ZHU Shou-Zheng +4 位作者 ZHOU Tian-Shu QI Hong-Xing WANG Jian-Yu LI Chun-Lai LIU Shi-Jie 《红外与毫米波学报》 CSCD 北大核心 2024年第6期846-857,共12页
The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it int... The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient training data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-supervised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results. 展开更多
关键词 compressed sensing deep learning self-supervised coded aperture imaging
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部