期刊文献+
共找到24,965篇文章
< 1 2 250 >
每页显示 20 50 100
Hydraulic fracturing-based analytical method for determining seepage characteristics at tunnel-gasketed joints 被引量:1
1
作者 GONG Chen-jie CHENG Ming-jin +2 位作者 FAN Xuan PENG Yi-cheng DING Wen-qi 《Journal of Central South University》 2025年第4期1520-1534,共15页
Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract... Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels. 展开更多
关键词 shield tunnels segment joints seepage characteristics hydraulic fracture analytical solution
在线阅读 下载PDF
Influence of the saw-tooth angle of rock joints on the shear performance of 2G-NPR bolt
2
作者 REN Shu-lin HE Man-chao +3 位作者 YUAN Yong TAO Zhi-gang ZHU Chun YIN Qian 《Journal of Central South University》 2025年第8期2998-3014,共17页
The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd g... The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd generation of negative Poisson ratio(2G-NPR)bolt is a new independently developed material characterized by high strength and toughness.However,the influence of joint surface roughness on its anchorage shear performance remains unexplored.This study involves preparing regular saw-tooth jointed rock masses and conducting laboratory shear comparison tests on unbolted samples,2G-NPR bolts,and Q235 steel anchors.A three-dimensional finite element method,developed by the author,was employed for numerical simulations to analyze the influence of saw-tooth angles on the shear resistance of anchored bolts.The findings show that the anchorage of bolts enhances the shear strength and deformation of saw-tooth rock joints.The 2G-NPR bolts demonstrate superior performance in shear strength and deformation enhancement compared to Q235 steel anchors,including improved toughening and crack-arresting effects.Furthermore,the improvement of the shear strength and displacement of the bolt decreases with the increase of the joint saw-tooth angle.These findings provide a valuable test basis for the engineering application of 2G-NPR bolts in rock mass stabilization. 展开更多
关键词 jointed rock mass shear resistance bolt anchorage 2G-NPR bolt saw-tooth rock joint
在线阅读 下载PDF
Corrosion-assisted fatigue crack growth behaviour of AA 7075-T651 friction stir welded joints:Influence of extended seawater exposure on microstructure and fracture characteristics
3
作者 Karthick Ganesan S.R.Koteswara Rao +1 位作者 T.Srinivasa Rao V.Rohit 《Defence Technology(防务技术)》 2025年第9期80-96,共17页
This study investigates the corrosion-assisted fatigue crack growth rate(FCGR)of 16 mm thick AA 7075-T651 friction stir welded(FSW)joints.Compact tension(CT)specimens were extracted from both the base material and FSW... This study investigates the corrosion-assisted fatigue crack growth rate(FCGR)of 16 mm thick AA 7075-T651 friction stir welded(FSW)joints.Compact tension(CT)specimens were extracted from both the base material and FSW joints to evaluate FCGR under varying corrosion exposure durations(0,7,30,60,and 90 days)at a constant stress ratio of 0.5.Microstructural analysis of the welds was conducted using optical and transmission electron microscopy(TEM).Results indicate that the critical stress intensity factor range(ΔK_(cr))of FSW joints is lower than that of the base material,primarily due to precipitate dissolution in the weld zone during the FSW process,as confirmed by TEM analysis.The fatigue life of FSW joints was significantly lower than that of the base material,but with prolonged exposure to seawater corrosion,the gap in fatigue life narrowed.Specimens exposed to seawater for more than 60days exhibited minimal differences in fatigue life between the base material and the FSW joints.This was attributed to the higher corrosion rate of the base material compared to the weld nugget,resulting in the formation of deeper pits that facilitated crack initiation and accelerated fatigue failure.The findings conclude that extended corrosion exposure leads to similar fatigue life and crack growth behaviour in both the base material and FSW joints.SEM and EDX analysis of AA7075-T651 revealed corrosion pits and rust products in initiation zones,ductile striations in growth regions,and secondary cracks with micro voids in fracture zones.FSW joints exhibited ultra-fine grains,smooth ductile fracture in initiation and growth regions,and brittle fracture in the fracture zones under both corroded and uncorroded conditions. 展开更多
关键词 Fatigue crack growth Pre-corrosion exposure Paris constants AA7075-T651 alloy Friction stir weld joints Precipitate-free zones(PFZs)
在线阅读 下载PDF
Effect of cold-working on corrosion induced damage in lug joints
4
作者 Ramanath M.N Chikmath L. Murthy H. 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期175-182,共8页
Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement b... Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles. 展开更多
关键词 Lug joint CORROSION Crack initiation COLD-WORKING Structural integrity
在线阅读 下载PDF
A comprehensive review of radiation effects on solder alloys and solder joints
5
作者 Norliza Ismail Wan Yusmawati Wan Yusoff +3 位作者 Nor Azlian Abdul Manaf Azuraida Amat Nurazlin Ahmad Emee Marina Salleh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期86-102,共17页
In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines r... In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines radiation-induced effects on solder alloys and solder joints in terms of microstructure and mechanical properties. In this paper, we evaluate the existing literature, including experimental studies and fundamental theory, to provide a comprehensive overview of the behavior of solder materials under radiation. A review of the literature highlights key mechanisms that contribute to radiation-induced changes in the microstructure, such as the formation of intermetallic compounds, grain growth,micro-voids and micro-cracks. Radiation is explored as a factor influencing solder alloy hardness,strength, fatigue and ductility. Moreover, the review addresses the challenges and limitations inherent in studying the effects of radiation on solder materials and offers recommendations for future research. It is crucial to understand radiation-induced effects on solder performance to design robust and radiationresistant electronic systems. A review of radiation effects on solder materials and their applications in electronics serves as a valuable resource for researchers, engineers, and practitioners in that field. 展开更多
关键词 Defence technology Solder alloy Solder joints Radiation-induced effect MICROSTRUCTURE Mechanical properties
在线阅读 下载PDF
Anisotropic strength and deformation of irregular columnar jointed rock masses under triaxial stress
6
作者 QUE Xiang-cheng ZHU Zhen-de +1 位作者 NIU Zi-hao ZHU Shu 《Journal of Central South University》 2025年第2期643-655,共13页
The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is c... The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method. 展开更多
关键词 irregular columnar jointed rock mass triaxial stress STRENGTH DEFORMATION anisotropic mechanical property empirical relation
在线阅读 下载PDF
Optimized joint repair effects on damage evolution and arching mechanism of CRTS II slab track under extreme thermal conditions
7
作者 CAI Xiao-pei CHEN Ze-lin +3 位作者 CHEN Bo-jing ZHONG Yang-long ZHOU Rui HUANG Yi-chen 《Journal of Central South University》 2025年第6期2273-2287,共15页
To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track ... To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track was derived based on the principle of stationary potential energy.Considering interlayer evolution and structural crack propagation,an optimized joint repair model for the track was established and validated.Subsequently,the impact of joint repair on track damage and arch stability under extreme temperatures was studied,and a comprehensive evaluation of the feasibility of joint repair and the evolution of damage after repair was conducted.The results show that after the joint repair,the temperature rise of the initial damage of the track structure can be increased by 11℃.Under the most unfavorable heating load with a superimposed temperature gradient,the maximum stiffness degradation index SDEG in the track structure is reduced by about 81.16%following joint repair.The joint repair process could effectively reduce the deformation of the slab arching under high temperatures,resulting in a reduction of 93.96%in upward arching deformation.After repair,with the damage to interfacing shear strength,the track arch increases by 2.616 mm. 展开更多
关键词 CRTS II slab track optimized joint repair arching mechanism temperature load damage initiation and evolution
在线阅读 下载PDF
Joint planning method for cross-domain unmanned swarm target assignment and mission trajectory
8
作者 WANG Ning LIANG Xiaolong +2 位作者 LI Zhe HOU Yueqi YANG Aiwu 《Journal of Systems Engineering and Electronics》 2025年第3期736-753,共18页
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss... Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA. 展开更多
关键词 cross-domain swarm unmanned system target assignment trajectory planning joint planning hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)
在线阅读 下载PDF
Failure behavior around a circular opening in a rock mass with non-persistent joints:A parallel-bond stress corrosion approach 被引量:3
9
作者 YANG Xu-xu JING Hong-wen +1 位作者 CHEN Kun-fu YANG Sheng-qi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2406-2420,共15页
The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior ... The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior around a circular opening in a rock mass having non-persistent open joints using PFC software package. A parallel-bond stress corrosion(PSC) approach was incorporated to drive the failure of rock mass around the circular opening, such that the whole progressive failure process after excavation was reproduced. Based on the determined micro parameters for intact material and joint segments, the failure process around the circular opening agrees very well with that obtained through laboratory experiment. A subsequent parametric study was then carried out to look into the influence of lateral pressure coefficient, joint dip angle and joint persistency on the failure pattern and crack evolution of the rock mass around the circular opening. Three failure patterns identified are step path failure, planar failure and rotation failure depending on the lateral pressure coefficient. Moreover, the increment of joint dip angle and joint persistency aggravates the rock mass failure around the opening. This study offers guideline on stability estimation of underground excavations. 展开更多
关键词 failure behavior circular OPENING non-persistent joint PFC software package stress corrosion
在线阅读 下载PDF
Corrosion fatigue crack growth mechanisms in welded joints of marine steel structures 被引量:15
10
作者 XU Qian SHAO Fei +2 位作者 BAI Lin-yue MA Qing-na SHEN Mei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期58-71,共14页
This paper presents a model of fatigue crack growth in a welded joint and a two-dimensional model of anodic dissolution based on Donahue model and anodic dissolution mechanism,respectively.In addition,a model for pred... This paper presents a model of fatigue crack growth in a welded joint and a two-dimensional model of anodic dissolution based on Donahue model and anodic dissolution mechanism,respectively.In addition,a model for predicting the corrosion fatigue crack growth rate in welded joints of steel marine structures is established and crack growth mechanisms are analyzed.The results show that during early stages of crack growth,corrosion fatigue crack growth rate in welded joints is mainly controlled by corrosion action,whereas cyclic loading becomes more influential during the later stage of crack propagation.Loading frequency and effective stress ratio can affect rupture period of protective film at the corrosion fatigue crack tip and the length of corrosion crack increment,respectively,which changes the influence of corrosion action on crack growth rate.However,the impact of stress amplitude on crack growth rate is only significant when crack propagation is caused by cyclic loading.Welding residual stress not only improves the effective stress ratio of cyclic loading,but also promotes crack closure and increases corrosion fatigue crack growth rate in welded joints.Compared to corrosion action,welding residual stress has a more significant influence on crack growth caused by cyclic loading. 展开更多
关键词 welded joints corrosion fatigue growth mechanism multi-factor
在线阅读 下载PDF
Integrated design of brushless motor drive and control system for robot joints 被引量:5
11
作者 MO Shuai LI Xu +4 位作者 YANG Zhen-ning ZHOU Chang-peng GAO Han-jun CEN Guo-jian HUANG Yun-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3818-3828,共11页
To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer developme... To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators. 展开更多
关键词 robot joint brushless motor control system upper computer
在线阅读 下载PDF
Microstructure and mechanical properties of dissimilar pinless friction stir spot welded 2A12 aluminum alloy and TC4 titanium alloy joints 被引量:9
12
作者 YANG Xia-wei FENG Wu-yuan +4 位作者 LI Wen-ya CHU Qiang XU Ya-xin MA Tie-jun WANG Wei-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3075-3084,共10页
The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys c... The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change. 展开更多
关键词 MICROSTRUCTURE mechanical properties friction stir spot welded dissimilar joints
在线阅读 下载PDF
Dynamics of luffing motion of a hydraulically driven shell manipulator with revolute clearance joints 被引量:5
13
作者 Chen Zhi-qun Qian Lin-fang +3 位作者 Chen Guang-song Nie Shou-cheng Yin Qiang Yue Cai-cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期689-708,共20页
In this study,a modeling method for investigating the dynamic characteristics of a hydraulically driven shell manipulator with revolute clearance joints is presented.This model accounts for the effect of the clearance... In this study,a modeling method for investigating the dynamic characteristics of a hydraulically driven shell manipulator with revolute clearance joints is presented.This model accounts for the effect of the clearance,the flexibility of the rotating beam,and the coupled dynamic characteristics of the hydraulic cylinder.A modified contact force model was developed to simulate the physical properties of realistic revolute joints with small clearances,heavy loads,and variable contact stiffnesses and damping coefficients with variations of the indentations.Considering the strong coupling relationship between the hydraulic cylinder and the flexible beam,a system equation of motion combining the state variables of the hydraulic cylinder and mechanical system was established.The complex nonlinear friction force of the hydraulic cylinder motion was constructed using a modified Lu Gre model,and the parameters of the friction model were identified using intelligent identification algorithms.Moreover,a test system for the shell manipulator was established to achieve experimental validation.Finally,the effects of the clearance size and the stiffness of the cylinder support on the dynamic response were investigated. 展开更多
关键词 Parameter identification Shell manipulator Hydraulic cylinder Revolute clearance joint
在线阅读 下载PDF
Damage alarming for bridge expansion joints using novelty detection technique based on long-term monitoring data 被引量:4
14
作者 缪长青 邓扬 +1 位作者 丁幼亮 李爱群 《Journal of Central South University》 SCIE EI CAS 2013年第1期226-235,共10页
Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for... Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints. 展开更多
关键词 damage alarming expansion joint TEMPERATURE traffic condition control chart suspension bridge
在线阅读 下载PDF
Macro and meso characteristics evolution on shear behavior of rock joints 被引量:1
15
作者 李凯辉 曹平 +1 位作者 张科 钟涌芳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3087-3096,共10页
Direct shear tests were conducted on the rock joints under constant normal load(CNL), while the acoustic emission(AE) signals generated during shear tests were monitored with PAC Micro-II system. Before and after shea... Direct shear tests were conducted on the rock joints under constant normal load(CNL), while the acoustic emission(AE) signals generated during shear tests were monitored with PAC Micro-II system. Before and after shearing, the surfaces of rock joints were measured by the Talysurf CLI 2000. By correlating the AE events with the shear stress-shear displacement curve, one can observe four periods of the whole course of shearing of rock joints. By the contrast of AE location and actual damage zone, it is elucidated that the AE event is related to the morphology of the joint. With the increase of shearing times, the shear behavior of rock joints gradually presents from the response of brittle behavior to that of ductile behavior. By combining the results of topography measurement, four morphological parameters of joint surface, S p(the maximum height of joint surface), N(number of islands), A(projection area) and V(volume of joint) were introduced, which decrease with shearing. Both the joint roughness coefficient(JRC) and joint matching coefficient(JMC) drop with shearing, and the shear strength of rock joints can be predicted by the JRC-JMC model. It establishes the relationship between micro-topography and macroscopic strength, which have the same change rule with shearing. 展开更多
关键词 rock joint shear behavior surface morphology acoustic emission joint roughness coefficient (JRC) joint matchingcoefficient (JMC)
在线阅读 下载PDF
Coupled thermo-hydro-mechanical process in buffer material and self-healing effects with joints 被引量:2
16
作者 YANG Gao-sheng LIU Yue-miao +2 位作者 GAO Yu-feng LI Jian CAI Guo-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2905-2918,共14页
Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with... Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with technological gap was studied,the heat transfer induced by liquid water flow and water vapor was embedded into the energy conservation equation.Based on the Barcelona basic model,the coupled thermo-hydro-mechanical model of unsaturated bentonite was established by analyzing the swelling process of bentonite block and the compression process of joint material.The China-Mock-up test was adopted to compare the numerical calculation results with the test results so as to verify the rationality of the proposed model.On this basis,the effect of joint self-healing on dry density,thermal conductivity and permeability coefficient of buffer material was further analyzed.The results show that,with bentonite hydrating and swelling,the joint material gradually increases in dry density,and exhibits comparatively uniform hydraulic and thermal conductivity properties as compacted bentonite block.As a result,the buffer material gradually shifts to homogenization due to the coordinated deformation. 展开更多
关键词 buffer material thermo-hydro-mechanical coupling joints self-healing effect
在线阅读 下载PDF
Numerical study on maximum rebound ratio in blasting wave propagation along radian direction normal to joints 被引量:4
17
作者 雷卫东 滕军 +2 位作者 HEFNY A 赵坚 关炯 《Journal of Central South University of Technology》 EI 2006年第6期743-748,共6页
In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points betwee... In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points between the two adjacent joints in the joint set is controlled by superposition of the multiple transmitted and the reflected waves, measured by the maximum rebound ratio. Parametric studies on the maximum rebound ratio along the radian direction normal to the joints were performed in universal distinct element code. The results show that the maximum rebound ratio is influenced by three factors, i.e., the normalized normal stiffness of joints, the ratio of joint spacing to wavelength and the joint from which the wave rebounds. The relationship between the maximum rebound ratio and the influence factors is generalized into five charts. Those charts can be used as the prediction model for estimating the maximum rebound ratio. 展开更多
关键词 2-D compressional wave maximum rebound ratio stiffness of joint
在线阅读 下载PDF
Analytical model of shear mechanical behaviour of bolted rock joints considering influence of normal stress on bolt guide rail effect 被引量:2
18
作者 ZHENG Luo-bin WANG Liang-qing ZHU Lin-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1505-1518,共14页
Rock bolts have been widely used in slopes as a reinforcement measure.Modelling the shear mechanical behaviours of bolted rock joints is very complicated due to the complex factors that affect the axial force and shea... Rock bolts have been widely used in slopes as a reinforcement measure.Modelling the shear mechanical behaviours of bolted rock joints is very complicated due to the complex factors that affect the axial force and shear force on the bolts.Rock bolts under shear action exhibit the guide rail effect;that is,the rock mass slides along the rock bolt as if the rock bolt is a rail.The normal stress can inhibit the guide rail effect and reduce the axial force on bolts.However,this factor is not considered by the existing analysis models.Shear tests of bolted joints under different normal stresses were carried out in the laboratory.During the test,the axial force on each point monitored on the bolt was recorded by a strain gauge,and the attenuation trend of the strain was studied.An analytical model that considers the inhibition of the bolt rail effect due to an increase in the normal stress was proposed to predict the shear mechanical behaviour of rock bolted joints.The new model accommodates the bolt shear behaviours in the elastic stage and plastic stage,and the estimated values agree well with the results of the direct shear tests in the laboratory.The validation shows that the proposed model can effectively describe the deformation characteristics of the bolts in the shear tests. 展开更多
关键词 bolted rock joints shear test shear behaviour analysis model
在线阅读 下载PDF
Corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding in alkaline solution 被引量:2
19
作者 Kamran AMINI Farhad GHARAVI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1573-1581,共9页
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper... This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior. 展开更多
关键词 friction stir welding COPPER brass alloy corrosion behavior alkaline solution dissimilar joint
在线阅读 下载PDF
New criterion for rock joints based on three-dimensional roughness parameters 被引量:9
20
作者 唐志成 刘泉声 黄继辉 《Journal of Central South University》 SCIE EI CAS 2014年第12期4653-4659,共7页
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma... The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests. 展开更多
关键词 rock joint shear behavior peak shear strength three-dimensional roughness parameter
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部