期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Recovery of magnetite from FeSO_4·7H_2O waste slag by co-precipitation method with calcium hydroxide as precipitant 被引量:3
1
作者 余旺 彭映林 郑雅杰 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期62-70,共9页
Proper utilization of the FeSO4·7H2O waste slag generated from TiO2 industry is an urgent need, and Fe3O4 particles are currently being widely used in the wastewater flocculation field. In this work, magnetite wa... Proper utilization of the FeSO4·7H2O waste slag generated from TiO2 industry is an urgent need, and Fe3O4 particles are currently being widely used in the wastewater flocculation field. In this work, magnetite was recovered from ferrous sulphate by a novel co-precipitation method with calcium hydroxide as the precipitant. Under optimum conditions, the obtained spherical magnetite particles are well crystallized with a Fe304 purity of 88.78%, but apt to aggregate with a median particle size of 1.83 μm. Magnetic measurement reveals the obtained Fe304 particles are soft magnetic with a saturation magnetization of 81.73 A-m2/kg. In addition, a highly crystallized gypsum co-product is obtained in blocky or irregular shape. Predictably, this study would provide additional opportunities for future application of low-cost Fe3O4 particles in water treatment field. 展开更多
关键词 FeSO4·7H2O TiO2 industry MAGNETITE co-precipitation calcium hydroxide magnetic seeding flocculation
在线阅读 下载PDF
Synthesis of Ce-doped yttrium aluminum garnet phosphor by impinging streams co-precipitation
2
作者 李友凤 叶红齐 +2 位作者 何显达 韩凯 刘辉 《Journal of Central South University》 SCIE EI CAS 2012年第2期324-330,共7页
Phosphor yttrium aluminum garnet Y3A15O12 (YAG), activated with trivalent cerium (Ce^3+), was synthesized by T-tube impinging streams, T-type vortex impinging streams co-precipitation method (IS-CP) and direct ... Phosphor yttrium aluminum garnet Y3A15O12 (YAG), activated with trivalent cerium (Ce^3+), was synthesized by T-tube impinging streams, T-type vortex impinging streams co-precipitation method (IS-CP) and direct co-precipitation method (D-CP), respectively. The crystallization, morphologies, particle size and particle size distribution of the phosphors obtained under different experimental conditions were studied. The influence of various factors on the luminescence intensity of the phosphor was also investigated, such as feeding methods, volume flow rate, contents of Ce and initial reactant concentration. The results show that the precursors synthesized by T-tube impinging streams co-precipitation reaction transform to Y3A15O12 (YAG) phosphor at about 1 000 ℃. The particles are far smaller and narrower than those prepared by D-CP. In the impinging streams co-precipitation system, the luminescent intensity of YAG:Ce phosphor increases with the increase of liquid flow rate. The intensity firstly increases then decreases with the increasing Ce^3+ doping content, and the maximum intensity is shown at 1.67% (molar fraction) Ce. Luminescent intensity gradually decreases with the increase of initial concentration of reactants. At the same operational condition, the luminescent intensity of the phosphors prepared by T-tube impinging streams reactor is higher than that by D-CP, and the luminescent intensity of the phosphors prepared by T-type vortex impinging streams is higher than that by T-tube impinging streams reactor. 展开更多
关键词 yttrium aluminum garnet CE luminescent properties impinging streams co-precipitation MICROMIXING
在线阅读 下载PDF
Synthesis and characterization of bismuth-doped tin dioxide nanometer powders 被引量:6
3
作者 何秋星 涂伟萍 胡剑青 《Journal of Central South University of Technology》 EI 2006年第5期519-524,共6页
Bismuth-doped tin dioxide nanometer powders were prepared by co-precipitation method using SnCl4 and Bi(NO3)3 as raw materials. The effects of calcining temperature and doping ratio on the particle size, composition... Bismuth-doped tin dioxide nanometer powders were prepared by co-precipitation method using SnCl4 and Bi(NO3)3 as raw materials. The effects of calcining temperature and doping ratio on the particle size, composition, spectrum selectivity of bismuth-doped tin dioxide and the phase transition of Bi-Sn precursor at different temperatures were studied by means of X-ray diffraction, transmission electron microscopy, ultraviolet-visual-near infrared diffuse reflection spectrum and the thermogravimetric-differential scanning calorimetry. The results show that prepared bismuth-doped tin dioxide powders have excellent characteristics with a single-phase tetragonal structure, good dispersibility, good absorbency for ultraviolet ray and average particle size less than 10 nm. The optimum conditions for preparing bismuth-doped tin dioxide nanometer powders are as follows: calcining temperature of 600℃, ratio of bismuth-doped in a range of 0.10-0.30, and Bi-Sn precursor being dispersed by ultrasonic wave and refluxed azeotropic and distillated with mixture of n-butanol and benzene. The mechanism of phase transition of Bi-Sn precursor is that Bi 3+ enters Sn-vacancy and then forms Sn—O—Bi bond. 展开更多
关键词 bismuth-doped tin dioxide tin dioxide nanometer powders co-precipitation method ultrasonic wave
在线阅读 下载PDF
Precipitation processes and luminescence properties of ZnO:La^(3+), Li^+ nanoparticles 被引量:2
4
作者 古映莹 李陆柯 +2 位作者 张稳稳 刘英 卢周广 《Journal of Central South University》 SCIE EI CAS 2013年第2期332-336,共5页
ZnO:La3+,Li+ nanoparticles were successfully prepared by co-precipitation, citric acid-assisted co-precipitation, co-precipitation combined solid-state reaction and thermal decomposition method. X-ray diffraction ... ZnO:La3+,Li+ nanoparticles were successfully prepared by co-precipitation, citric acid-assisted co-precipitation, co-precipitation combined solid-state reaction and thermal decomposition method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and luminescence spectrophotometry were employed to characterize the crystal phases, particle sizes and luminescence properties of the as-prepared nanopowders. The results indicate that all the prepared samples crystallize in a hexagonal wurtzite structure. The ZnO:La3+,Li+ prepared by citric acid-assisted co-precipitation method has a particle size of about 80 nm, which is the smallest among all the samples. Fluorescence (FL) spectra of all samples exhibit three typical emissions: a violet one centered at around 400 nm, blue around 450 nm and 466 rim, and weak green near 520 nm. But the samples prepared by co-precipitation method show a strong and wide green light emission located at about 500 nm. The ZnO:La3+,Li+ nanoparticles synthesized by the co-precipitation method demonstrate relatively the strongest emission intensity. 展开更多
关键词 ZNO La3+ Li+ -Key words: ZnO:La L1 nanopartxcles doping co-precipitation method luminescence properties
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部