In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p...In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.展开更多
The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized...The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms.展开更多
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar...Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.展开更多
As the most productive and prestigious writer in contemporary Australian literature,Tim Winton is noted not only for his novels but also for his short stories.Neighbors is a case in point.The short story describes the...As the most productive and prestigious writer in contemporary Australian literature,Tim Winton is noted not only for his novels but also for his short stories.Neighbors is a case in point.The short story describes the daily trivial incidents in the multi-cultural background according to the line of a newly-weds moving to a new neighborhood.The young couple gradually understood and communicated with their neighbors and eventually achieved cultural adaptation.展开更多
Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic fire...Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic firewalls.Many intrusion detection methods are processed through machine learning.Previous literature has shown that the performance of an intrusion detection method based on hybrid learning or integration approach is superior to that of single learning technology.However,almost no studies focus on how additional representative and concise features can be extracted to process effective intrusion detection among massive and complicated data.In this paper,a new hybrid learning method is proposed on the basis of features such as density,cluster centers,and nearest neighbors(DCNN).In this algorithm,data is represented by the local density of each sample point and the sum of distances from each sample point to cluster centers and to its nearest neighbor.k-NN classifier is adopted to classify the new feature vectors.Our experiment shows that DCNN,which combines K-means,clustering-based density,and k-NN classifier,is effective in intrusion detection.展开更多
Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. Th...Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. The protocol improves the way of the nodes distribution at random. The terminal nodes which have not been a two-level cluster head in the cluster can compete with the principle of equivalent possibility, and on the basis of the rest energy of nodes the two-level cluster head is selected at last. The single hop within the cluster and single hop or multiple hops between clusters are used. Simulation experiment results show that the performance of the two-level linear clustering protocol applied to the Hexi corridor agricultural field is superior to that of the LEACH protocol in the survival time of network nodes, the ratio of success, and the remaining energy of network nodes.展开更多
Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can dri...Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can drive systems into the scale-free one with the assortative or disassortative degree correlations, and the hierarchical clustering. Meanwhile, the processes of the information diffusion are extremely speeded up by the adaptive changes of network topology.展开更多
Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate th...Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate the Qo S-specified channels. On the aspect of spectrum detection, due to the available detection index with the global detection metrics, cooperation thresholds are adaptively adjusted to select the cooperative model for maximizing the available sensing region. On the aspect of spectrum allocation, for different service category, the idle channels are efficiently allocated that depend on their stability and available bandwidth. Meanwhile, based on the requested rates defined by fuzzy theory, the secondary users can be divided into two categories, i.e.,delay sensitive service and reliability sensitive service. Finally, the Qo S-specified channels from the targeted spectrum subset are allocated to secondary users. Simulation results show that our proposed algorithm can not only expand the available sensing region,but also decrease the outage probability of delay sensitive services. Additionally, it enables stable power consumption in the time-variation channel.展开更多
This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the archite...This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification.展开更多
针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想...针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想相结合,设计了一种基于密度峰值的初始类中心决策值选择方法(initial class center decision value algorithm based on density peak,DP_KD),解决密度调整谱聚类中聚类结果不稳定的问题。其次,利用样本间的平均距离计算相应的邻域半径,并根据样本标准差自适应地求解每个样本的尺度参数,构造样本间的相似度矩阵,实现了近邻参数的自适应设置,解决尺度参数需要人为设置的问题。然后,基于优化后的初始类中心决策值和近邻参数方法,进一步调整高斯核函数,提出一种基于邻域标准差的密度调整谱聚类算法(density adjusted spectral clustering algorithm based on neighborhood standard deviation,DSSD),通过构建特征向量空间实现了密度谱聚类。最后,将提出的算法与其他聚类算法在多个数据集上进行了对比。结果表明,与其他谱聚类算法相比,本文提出的DSSD算法不仅具有更好的聚类效果,且聚类结果更加稳定,尤其是在类内密集且类间边缘明确的DIM512数据集中,DSSD算法可以正确地进行聚类分簇;在准确率、兰德系数和F-measure上较其他算法至少提升了0.0268、0.0136和0.0247,这表明DSSD算法不仅聚类效果较好且更适合大规模数据集的聚类分析。展开更多
为维护网络运行安全,保证网络信息安全存储,提出基于多源数据挖掘的网络安全态势评估系统。首先建立以应用层、控制层、数据转发层为核心的3层网络安全态势系统架构,为保证应用层与网络设备之间信息有效传输,利用OSGi(Open Service Gate...为维护网络运行安全,保证网络信息安全存储,提出基于多源数据挖掘的网络安全态势评估系统。首先建立以应用层、控制层、数据转发层为核心的3层网络安全态势系统架构,为保证应用层与网络设备之间信息有效传输,利用OSGi(Open Service Gateway Initiative)设计模式对控制层的ONOS(Open Network Operating System)控制器实施5层平行建构,以保障网络安全态势的决策响应。利用流量探测模块内多探测器的部署,实现网络多源数据的深度挖掘;引入LEACH(Low Energy Adaptive Clustering Hierarchy)算法,在网络簇首实现多源数据融合。通过安全态势评估模块对网络入侵因子威胁等级进行分析后,结合权系数理论对网络态势威胁因子进行威胁度赋值,并结合网络层次划分法对运行网络服务层、主机层、网络层安全态势实施分层评估。实验表明,所提方法对网络数据运行状态分析能力较高,面对多类型网络威胁因子的攻击行为能做到精准识别,为网络安全运行提供重要保障。展开更多
We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controller...We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently for the nodes in one community, which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities. Some sufficient criteria are derived to ensure the nodes in the same group projectively synchronize and there is also projective synchronization between nodes in different groups. Particularly, the weight configuration matrix is not assumed to be symmetric or irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results.展开更多
How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.A...How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.An energy-efficient multi-mode clusters maintenance(M2CM) method is proposed based on localized and event-driven mechanism in this work,which is different from the conventional clusters maintenance model with always periodically re-clustered among the whole network style based on time-trigger for hierarchical WSNs.M2 CM can meet such demands of clusters maintenance as adaptive local maintenance for the damaged clusters according to its changes in time and space field.,the triggers of M2 CM include such events as nodes' residual energy being under the threshold,the load imbalance of cluster head,joining in or exiting from any cluster for new node or disable one,etc.Based on neighboring relationship of the damaged clusters,one can start a single cluster(inner-cluster) maintenance or clusters(inter-cluster) maintenance program to meet diverse demands in the topology management of hierarchical WSNs.The experiment results based on NS2 simulation show that the proposed method can significantly save energy used in maintaining a damaged network,effectively narrow down the influenced area of clusters maintenance,and increase transmitted data and prolong lifetime of network compared to the traditional schemes.展开更多
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
基金supported by the National Science Council under Grant No. NSC98-2221-E-468-017 and NSC 100-2221-E-468-023the Research Project of Asia University under Grant No. 100-A-04
文摘In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.
基金the General Program of National Natural Science Foundation of China(62072049).
文摘The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms.
基金supported by the Natural Science Foundation of China under contact(61233007)
文摘Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.
文摘As the most productive and prestigious writer in contemporary Australian literature,Tim Winton is noted not only for his novels but also for his short stories.Neighbors is a case in point.The short story describes the daily trivial incidents in the multi-cultural background according to the line of a newly-weds moving to a new neighborhood.The young couple gradually understood and communicated with their neighbors and eventually achieved cultural adaptation.
文摘Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic firewalls.Many intrusion detection methods are processed through machine learning.Previous literature has shown that the performance of an intrusion detection method based on hybrid learning or integration approach is superior to that of single learning technology.However,almost no studies focus on how additional representative and concise features can be extracted to process effective intrusion detection among massive and complicated data.In this paper,a new hybrid learning method is proposed on the basis of features such as density,cluster centers,and nearest neighbors(DCNN).In this algorithm,data is represented by the local density of each sample point and the sum of distances from each sample point to cluster centers and to its nearest neighbor.k-NN classifier is adopted to classify the new feature vectors.Our experiment shows that DCNN,which combines K-means,clustering-based density,and k-NN classifier,is effective in intrusion detection.
基金supported by the Foundation Projects in Gansu Province Department of Education under Grant No.2015A-163
文摘Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. The protocol improves the way of the nodes distribution at random. The terminal nodes which have not been a two-level cluster head in the cluster can compete with the principle of equivalent possibility, and on the basis of the rest energy of nodes the two-level cluster head is selected at last. The single hop within the cluster and single hop or multiple hops between clusters are used. Simulation experiment results show that the performance of the two-level linear clustering protocol applied to the Hexi corridor agricultural field is superior to that of the LEACH protocol in the survival time of network nodes, the ratio of success, and the remaining energy of network nodes.
基金Project supported by the Key Project of Hunan Provincial Educational Department of China (Grant No 04A058)the General Project of Hunan Provincial Educational Department of China (Grant No 07C754)the National Natural Science Foundation of China (Grant No 30570432)
文摘Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can drive systems into the scale-free one with the assortative or disassortative degree correlations, and the hierarchical clustering. Meanwhile, the processes of the information diffusion are extremely speeded up by the adaptive changes of network topology.
基金partly supported by National Natural Science Foundation of China (No. 61371113, 61371112)
文摘Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate the Qo S-specified channels. On the aspect of spectrum detection, due to the available detection index with the global detection metrics, cooperation thresholds are adaptively adjusted to select the cooperative model for maximizing the available sensing region. On the aspect of spectrum allocation, for different service category, the idle channels are efficiently allocated that depend on their stability and available bandwidth. Meanwhile, based on the requested rates defined by fuzzy theory, the secondary users can be divided into two categories, i.e.,delay sensitive service and reliability sensitive service. Finally, the Qo S-specified channels from the targeted spectrum subset are allocated to secondary users. Simulation results show that our proposed algorithm can not only expand the available sensing region,but also decrease the outage probability of delay sensitive services. Additionally, it enables stable power consumption in the time-variation channel.
基金Science and Researching Foundation of Jiamusi University(L2006-12)
文摘This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification.
文摘针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想相结合,设计了一种基于密度峰值的初始类中心决策值选择方法(initial class center decision value algorithm based on density peak,DP_KD),解决密度调整谱聚类中聚类结果不稳定的问题。其次,利用样本间的平均距离计算相应的邻域半径,并根据样本标准差自适应地求解每个样本的尺度参数,构造样本间的相似度矩阵,实现了近邻参数的自适应设置,解决尺度参数需要人为设置的问题。然后,基于优化后的初始类中心决策值和近邻参数方法,进一步调整高斯核函数,提出一种基于邻域标准差的密度调整谱聚类算法(density adjusted spectral clustering algorithm based on neighborhood standard deviation,DSSD),通过构建特征向量空间实现了密度谱聚类。最后,将提出的算法与其他聚类算法在多个数据集上进行了对比。结果表明,与其他谱聚类算法相比,本文提出的DSSD算法不仅具有更好的聚类效果,且聚类结果更加稳定,尤其是在类内密集且类间边缘明确的DIM512数据集中,DSSD算法可以正确地进行聚类分簇;在准确率、兰德系数和F-measure上较其他算法至少提升了0.0268、0.0136和0.0247,这表明DSSD算法不仅聚类效果较好且更适合大规模数据集的聚类分析。
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 70871056 and 71271103)the Six Talents Peak Foundation of Jiangsu Province,China
文摘We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently for the nodes in one community, which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities. Some sufficient criteria are derived to ensure the nodes in the same group projectively synchronize and there is also projective synchronization between nodes in different groups. Particularly, the weight configuration matrix is not assumed to be symmetric or irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results.
基金supported by the National Natural Science Foundation of China(Grant No.61170219)the Joint Research Foundation of the Ministry of Education of the People’s Republic of China and China Mobile(Grant No.MCM20150202)the Science and Technology Project Affiliated to Chongqing Education Commission(KJ1602201)
文摘How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.An energy-efficient multi-mode clusters maintenance(M2CM) method is proposed based on localized and event-driven mechanism in this work,which is different from the conventional clusters maintenance model with always periodically re-clustered among the whole network style based on time-trigger for hierarchical WSNs.M2 CM can meet such demands of clusters maintenance as adaptive local maintenance for the damaged clusters according to its changes in time and space field.,the triggers of M2 CM include such events as nodes' residual energy being under the threshold,the load imbalance of cluster head,joining in or exiting from any cluster for new node or disable one,etc.Based on neighboring relationship of the damaged clusters,one can start a single cluster(inner-cluster) maintenance or clusters(inter-cluster) maintenance program to meet diverse demands in the topology management of hierarchical WSNs.The experiment results based on NS2 simulation show that the proposed method can significantly save energy used in maintaining a damaged network,effectively narrow down the influenced area of clusters maintenance,and increase transmitted data and prolong lifetime of network compared to the traditional schemes.