期刊文献+
共找到518篇文章
< 1 2 26 >
每页显示 20 50 100
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
1
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 adaptive Grasshopper Optimization Algorithm(AGOA) cluster Head(CH) network lifetime Teaching-Learning-based Optimization Algorithm(TLOA) Wireless Sensor Networks(WSNs)
在线阅读 下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
2
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
在线阅读 下载PDF
An Adaptive Steganographic Algorithm for Point Geometry Based on Nearest Neighbors Search
3
作者 Yuan-Yu Tsai Chi-Shiang Chan 《Journal of Electronic Science and Technology》 CAS 2012年第3期220-226,共7页
In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p... In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation. 展开更多
关键词 adaptATION nearest neighbors search point geometry steganography.
在线阅读 下载PDF
ADC-DL:Communication-Efficient Distributed Learning with Hierarchical Clustering and Adaptive Dataset Condensation
4
作者 Zhipeng Gao Yan Yang +1 位作者 Chen Zhao Zijia Mo 《China Communications》 SCIE CSCD 2022年第12期73-85,共13页
The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized... The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms. 展开更多
关键词 distributed learning Non-IID data partition hierarchical clustering adaptive dataset condensation
在线阅读 下载PDF
Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering
5
作者 HUANG Haixin KONG Chang 《沈阳理工大学学报》 CAS 2014年第4期75-80,共6页
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar... Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly. 展开更多
关键词 fuzzy C-means clustering adaptive feature weighted ENTROPY wind power prediction
在线阅读 下载PDF
Cultural Adaptation in Tim Winton's "Neighbors" 被引量:2
6
作者 曹丽华 《海外英语》 2012年第6X期174-175,共2页
As the most productive and prestigious writer in contemporary Australian literature,Tim Winton is noted not only for his novels but also for his short stories.Neighbors is a case in point.The short story describes the... As the most productive and prestigious writer in contemporary Australian literature,Tim Winton is noted not only for his novels but also for his short stories.Neighbors is a case in point.The short story describes the daily trivial incidents in the multi-cultural background according to the line of a newly-weds moving to a new neighborhood.The young couple gradually understood and communicated with their neighbors and eventually achieved cultural adaptation. 展开更多
关键词 TIM Winton neighbors CULTURAL adaptATION
在线阅读 下载PDF
Intrusion Detection Algorithm Based on Density,Cluster Centers,and Nearest Neighbors 被引量:6
7
作者 Xiujuan Wang Chenxi Zhang Kangfeng Zheng 《China Communications》 SCIE CSCD 2016年第7期24-31,共8页
Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic fire... Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic firewalls.Many intrusion detection methods are processed through machine learning.Previous literature has shown that the performance of an intrusion detection method based on hybrid learning or integration approach is superior to that of single learning technology.However,almost no studies focus on how additional representative and concise features can be extracted to process effective intrusion detection among massive and complicated data.In this paper,a new hybrid learning method is proposed on the basis of features such as density,cluster centers,and nearest neighbors(DCNN).In this algorithm,data is represented by the local density of each sample point and the sum of distances from each sample point to cluster centers and to its nearest neighbor.k-NN classifier is adopted to classify the new feature vectors.Our experiment shows that DCNN,which combines K-means,clustering-based density,and k-NN classifier,is effective in intrusion detection. 展开更多
关键词 intrusion detection DCNN density cluster center nearest neighbor
在线阅读 下载PDF
Two-Level Linear Clustering Protocol Based on Wireless Sensor Networks 被引量:1
8
作者 Mei Hu Yong-Xi Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第3期257-261,共5页
Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. Th... Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. The protocol improves the way of the nodes distribution at random. The terminal nodes which have not been a two-level cluster head in the cluster can compete with the principle of equivalent possibility, and on the basis of the rest energy of nodes the two-level cluster head is selected at last. The single hop within the cluster and single hop or multiple hops between clusters are used. Simulation experiment results show that the performance of the two-level linear clustering protocol applied to the Hexi corridor agricultural field is superior to that of the LEACH protocol in the survival time of network nodes, the ratio of success, and the remaining energy of network nodes. 展开更多
关键词 clustering ENERGY-EFFICIENT FARMLAND Hexi corridor low energy adaptive clustering hierarchy (LEACH) LINEAR wireless sensor network (WSN).
在线阅读 下载PDF
Information diffusion on adaptive network
9
作者 胡柯 唐翌 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第10期3536-3541,共6页
Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can dri... Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can drive systems into the scale-free one with the assortative or disassortative degree correlations, and the hierarchical clustering. Meanwhile, the processes of the information diffusion are extremely speeded up by the adaptive changes of network topology. 展开更多
关键词 adaptive network information diffusion degree correlation hierarchical clustering
在线阅读 下载PDF
Fuzzy Service Aware Adaptive Cooperative Spectrum Sensing Algorithm
10
作者 Gongan Qiu Shibing Zhang Xiaoge Zhang 《China Communications》 SCIE CSCD 2016年第12期250-260,共11页
Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate th... Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate the Qo S-specified channels. On the aspect of spectrum detection, due to the available detection index with the global detection metrics, cooperation thresholds are adaptively adjusted to select the cooperative model for maximizing the available sensing region. On the aspect of spectrum allocation, for different service category, the idle channels are efficiently allocated that depend on their stability and available bandwidth. Meanwhile, based on the requested rates defined by fuzzy theory, the secondary users can be divided into two categories, i.e.,delay sensitive service and reliability sensitive service. Finally, the Qo S-specified channels from the targeted spectrum subset are allocated to secondary users. Simulation results show that our proposed algorithm can not only expand the available sensing region,but also decrease the outage probability of delay sensitive services. Additionally, it enables stable power consumption in the time-variation channel. 展开更多
关键词 spectrum detection spectrum allocation adaptive cluster cooperation fuzzy service awareness
在线阅读 下载PDF
Application of a New Fuzzy Clustering Algorithm in Intrusion Detection
11
作者 WU Tiefeng 《现代电子技术》 2008年第4期100-102,共3页
This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the archite... This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification. 展开更多
关键词 模糊聚类算法 干扰检测 计算机技术 FCM
在线阅读 下载PDF
边缘计算网络中多核任务卸载调度和资源适配研究
12
作者 李金 樊腾飞 +2 位作者 高红亮 刘科孟 谢虎 《兵工自动化》 北大核心 2025年第3期29-34,共6页
为解决边缘计算网络任务卸载中的问题,对移动边缘关键技术进行研究。设计边缘节点计算分布式架构,参考量子粒子群算法和容器技术,形成基于边缘网关架构的任务卸载优化策略;对优化策略进行仿真实验,通过改变计算任务规模以及计算任务大小... 为解决边缘计算网络任务卸载中的问题,对移动边缘关键技术进行研究。设计边缘节点计算分布式架构,参考量子粒子群算法和容器技术,形成基于边缘网关架构的任务卸载优化策略;对优化策略进行仿真实验,通过改变计算任务规模以及计算任务大小,分析任务卸载时延和耗能。结果表明:该策略能够有效降低任务卸载时延和耗能,实现边缘节点资源的充分利用,达到资源的良好适配效果。 展开更多
关键词 边缘节点 边缘计算集群 分布式架构 任务卸载 资源适配
在线阅读 下载PDF
自适应聚类中心个数选择:一种联邦学习的隐私效用平衡方法
13
作者 宁博 宁一鸣 +3 位作者 杨超 周新 李冠宇 马茜 《电子与信息学报》 北大核心 2025年第2期519-529,共11页
联邦学习是一种分布式机器学习方法,它使多个设备或节点能够协作训练模型,同时保持数据的本地性。但由于联邦学习是由不同方拥有的数据集进行模型训练,敏感数据可能会被泄露。为了改善上述问题,已有相关工作在联邦学习中应用差分隐私对... 联邦学习是一种分布式机器学习方法,它使多个设备或节点能够协作训练模型,同时保持数据的本地性。但由于联邦学习是由不同方拥有的数据集进行模型训练,敏感数据可能会被泄露。为了改善上述问题,已有相关工作在联邦学习中应用差分隐私对梯度数据添加噪声。然而在采用了相应的隐私技术来降低敏感数据泄露风险的同时,模型精度和效果因为噪声大小的不同也受到了部分影响。为解决此问题,该文提出一种自适应聚类中心个数选择机制(DP-Fed-Adap),根据训练轮次和梯度的变化动态地改变聚类中心个数,使模型可以在保持相同性能水平的同时确保对敏感数据的保护。实验表明,在使用相同的隐私预算前提下DP-Fed-Adap与添加了差分隐私的联邦相似算法(FedSim)和联邦平均算法(FedAvg)相比,具有更好的模型性能和隐私保护效果。 展开更多
关键词 联邦学习 差分隐私保护 梯度聚类 自适应选择
在线阅读 下载PDF
基于邻域标准差的密度调整谱聚类算法
14
作者 郭笑雨 刘金金 +3 位作者 陈亚军 李豪杰 袁培燕 赵晓焱 《工程科学与技术》 北大核心 2025年第2期40-53,共14页
针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想... 针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想相结合,设计了一种基于密度峰值的初始类中心决策值选择方法(initial class center decision value algorithm based on density peak,DP_KD),解决密度调整谱聚类中聚类结果不稳定的问题。其次,利用样本间的平均距离计算相应的邻域半径,并根据样本标准差自适应地求解每个样本的尺度参数,构造样本间的相似度矩阵,实现了近邻参数的自适应设置,解决尺度参数需要人为设置的问题。然后,基于优化后的初始类中心决策值和近邻参数方法,进一步调整高斯核函数,提出一种基于邻域标准差的密度调整谱聚类算法(density adjusted spectral clustering algorithm based on neighborhood standard deviation,DSSD),通过构建特征向量空间实现了密度谱聚类。最后,将提出的算法与其他聚类算法在多个数据集上进行了对比。结果表明,与其他谱聚类算法相比,本文提出的DSSD算法不仅具有更好的聚类效果,且聚类结果更加稳定,尤其是在类内密集且类间边缘明确的DIM512数据集中,DSSD算法可以正确地进行聚类分簇;在准确率、兰德系数和F-measure上较其他算法至少提升了0.0268、0.0136和0.0247,这表明DSSD算法不仅聚类效果较好且更适合大规模数据集的聚类分析。 展开更多
关键词 谱聚类 密度调整 邻域标准差 自适应 密度峰值
在线阅读 下载PDF
基于ZigBee无线网络的Cluster-Tree路由算法研究 被引量:6
15
作者 赵博 吴静 《电子技术应用》 北大核心 2016年第4期116-119,123,共5页
针对ZigBee无线网络中Cluster-Tree算法只依靠父子关系路由且ZigBee技术传输带宽的限制,致使网络中负载较重的链路不能及时传递信息,而造成网络拥塞、丢包和较低的吞吐量问题,提出了一种改进算法Z-DMHCTR。该算法针对负载超过一定限度... 针对ZigBee无线网络中Cluster-Tree算法只依靠父子关系路由且ZigBee技术传输带宽的限制,致使网络中负载较重的链路不能及时传递信息,而造成网络拥塞、丢包和较低的吞吐量问题,提出了一种改进算法Z-DMHCTR。该算法针对负载超过一定限度的节点,除了按照原等级树算法路由之外,结合引入的邻居列表信息,寻找节点不与原路径相交的路径同时进行信息传输,从而提高网络带宽利用率,达到提升网络的吞吐量的目的。仿真实验主要从网络吞吐量、端到端数据传输延时等方面入手进行对比。结果表明,改进算法能够有效地提高网络吞吐量,并降低了传输数据的延时。 展开更多
关键词 ZIGBEE网络 cluster-Tree算法 Z-DMHCTR算法 邻居列表
在线阅读 下载PDF
基于多源数据挖掘的网络安全态势评估系统
16
作者 王峥 崔冉 《吉林大学学报(信息科学版)》 2025年第1期143-149,共7页
为维护网络运行安全,保证网络信息安全存储,提出基于多源数据挖掘的网络安全态势评估系统。首先建立以应用层、控制层、数据转发层为核心的3层网络安全态势系统架构,为保证应用层与网络设备之间信息有效传输,利用OSGi(Open Service Gate... 为维护网络运行安全,保证网络信息安全存储,提出基于多源数据挖掘的网络安全态势评估系统。首先建立以应用层、控制层、数据转发层为核心的3层网络安全态势系统架构,为保证应用层与网络设备之间信息有效传输,利用OSGi(Open Service Gateway Initiative)设计模式对控制层的ONOS(Open Network Operating System)控制器实施5层平行建构,以保障网络安全态势的决策响应。利用流量探测模块内多探测器的部署,实现网络多源数据的深度挖掘;引入LEACH(Low Energy Adaptive Clustering Hierarchy)算法,在网络簇首实现多源数据融合。通过安全态势评估模块对网络入侵因子威胁等级进行分析后,结合权系数理论对网络态势威胁因子进行威胁度赋值,并结合网络层次划分法对运行网络服务层、主机层、网络层安全态势实施分层评估。实验表明,所提方法对网络数据运行状态分析能力较高,面对多类型网络威胁因子的攻击行为能做到精准识别,为网络安全运行提供重要保障。 展开更多
关键词 OSGi设计模式 ONOS控制器 LEACH算法 权系数理论 网络层次划分法
在线阅读 下载PDF
Cluster projective synchronization of complex networks with nonidentical dynamical nodes
17
作者 姚洪兴 王树国 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期132-138,共7页
We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controller... We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently for the nodes in one community, which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities. Some sufficient criteria are derived to ensure the nodes in the same group projectively synchronize and there is also projective synchronization between nodes in different groups. Particularly, the weight configuration matrix is not assumed to be symmetric or irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results. 展开更多
关键词 cluster projective synchronization complex network time-varying delay adaptive con-troller
在线阅读 下载PDF
Energy-Efficient Multi-Mode Clusters Maintenance(M^2CM) for Hierarchical Wireless Sensor Networks
18
作者 Xiangdong Hu Zhulin Liu 《China Communications》 SCIE CSCD 2017年第6期1-12,共12页
How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.A... How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.An energy-efficient multi-mode clusters maintenance(M2CM) method is proposed based on localized and event-driven mechanism in this work,which is different from the conventional clusters maintenance model with always periodically re-clustered among the whole network style based on time-trigger for hierarchical WSNs.M2 CM can meet such demands of clusters maintenance as adaptive local maintenance for the damaged clusters according to its changes in time and space field.,the triggers of M2 CM include such events as nodes' residual energy being under the threshold,the load imbalance of cluster head,joining in or exiting from any cluster for new node or disable one,etc.Based on neighboring relationship of the damaged clusters,one can start a single cluster(inner-cluster) maintenance or clusters(inter-cluster) maintenance program to meet diverse demands in the topology management of hierarchical WSNs.The experiment results based on NS2 simulation show that the proposed method can significantly save energy used in maintaining a damaged network,effectively narrow down the influenced area of clusters maintenance,and increase transmitted data and prolong lifetime of network compared to the traditional schemes. 展开更多
关键词 HIERARCHICAL iterative clustering MULTI-MODE EVENT-DRIVEN adaptive ENERGY-EFFICIENT
在线阅读 下载PDF
基于航迹数据的改进DBSCAN聚类算法研究 被引量:1
19
作者 申正义 李平 +2 位作者 王洪林 赵迪 郭文琪 《空天预警研究学报》 CSCD 2024年第2期128-131,共4页
为研究模拟训练航迹数据聚类,针对基于密度的噪声应用空间聚类(DBSCAN)算法参数选取不精准、聚类准确度不高的问题,提出一种改进的DBSCAN聚类算法.首先,通过KNN算法计算邻域半径并得到用于DBSCAN聚类的初始化核心数据对象,实现粗聚类;其... 为研究模拟训练航迹数据聚类,针对基于密度的噪声应用空间聚类(DBSCAN)算法参数选取不精准、聚类准确度不高的问题,提出一种改进的DBSCAN聚类算法.首先,通过KNN算法计算邻域半径并得到用于DBSCAN聚类的初始化核心数据对象,实现粗聚类;其次,根据数据对象的特点,加入航向特征进行二次聚类,既解决了DBSCAN算法随机初始化核心点和参数选取难的问题,又加入能够反映数据方向的特征;最后,进行了仿真实验.实验结果表明,改进DBSCAN算法比传统DBSCAN算法具有更好的聚类效果. 展开更多
关键词 模拟训练 DBSCAN算法 二次聚类 自适应参数选取 航迹数据
在线阅读 下载PDF
面向集成学习的流形近邻样本包络与分层多类型变换算法
20
作者 颜芳 马洁 +3 位作者 李勇明 王品 覃剑 刘承宇 《电子学报》 CSCD 北大核心 2024年第12期4125-4141,共17页
集成学习是机器学习领域的重要分支和研究热点.目前集成学习算法的主要范式是:基于原样本集得到多个样本子集,分别训练基分类器,集成基分类器结果 .这种做法的主要问题在于:由于各子集均来自原样本集,因此,各子集之间的多样性显著降低.... 集成学习是机器学习领域的重要分支和研究热点.目前集成学习算法的主要范式是:基于原样本集得到多个样本子集,分别训练基分类器,集成基分类器结果 .这种做法的主要问题在于:由于各子集均来自原样本集,因此,各子集之间的多样性显著降低.尤其当原样本集数据尺寸小、采样比率大、不平衡程度高时,这一问题非常严重.此外,当原样本集可分度低时,重采样获得的样本子集的可分度改善也有限.为解决这个问题,本文提出面向集成学习的流形近邻样本包络与分层多类型变换算法,旨在通过包络化机制和多类型样本变换将原样本集转化为具有差异性的分层包络样本集,从而提高样本子集的多样性和可分度.首先设计流形近邻样本包络化机制,将原样本转化为样本包络.然后对样本包络进行多类型样本变换,重构生成分层包络样本.接着,设计基于联合结构域适应的层间一致性保持机制,保持变换前后样本分布的一致性,提高包络样本对原样本的高表征能力.此后,针对各层包络样本集,分别进行特征降维和训练基分类器.最后,采用二维决策融合机制得到最终分类结果.实验部分采用了十余个数据集和多个相关算法用于验证.结果表明,相较于原样本集,本文算法构造的分层包络样本集提高了样本子集的多样性,改进了集成学习性能,准确率最高提升了18.56%.与相关集成学习算法相比,准确率最高提升了7.56%.本文工作为现有集成学习算法改进研究提供了新思路,将直接基于原样本的集成学习范式转化为基于分层包络样本的集成学习新范式,具有参考价值. 展开更多
关键词 集成学习 包络学习 样本变换 近邻样本包络化 域适应 分类器集成
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部