期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Scaling up Kernel Grower Clustering Method for Large Data Sets via Core-sets 被引量:2
1
作者 CHANG Liang DENG Xiao-Ming +1 位作者 ZHENG Sui-Wu WANG Yong-Qing 《自动化学报》 EI CSCD 北大核心 2008年第3期376-382,共7页
核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这... 核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这份报纸,我们用核心集合建议一个可伸缩起来的核栽培者方法,它是比为聚类的大数据的原来的方法显著地快的。同时,它能处理很大的数据集合。象合成数据集合一样的基准数据集合的数字实验显示出建议方法的效率。方法也被用于真实图象分割说明它的性能。 展开更多
关键词 大型数据集 图象分割 模式识别 磁心配置 核聚类
在线阅读 下载PDF
Clustering method based on data division and partition 被引量:1
2
作者 卢志茂 刘晨 +2 位作者 S.Massinanke 张春祥 王蕾 《Journal of Central South University》 SCIE EI CAS 2014年第1期213-222,共10页
Many classical clustering algorithms do good jobs on their prerequisite but do not scale well when being applied to deal with very large data sets(VLDS).In this work,a novel division and partition clustering method(DP... Many classical clustering algorithms do good jobs on their prerequisite but do not scale well when being applied to deal with very large data sets(VLDS).In this work,a novel division and partition clustering method(DP) was proposed to solve the problem.DP cut the source data set into data blocks,and extracted the eigenvector for each data block to form the local feature set.The local feature set was used in the second round of the characteristics polymerization process for the source data to find the global eigenvector.Ultimately according to the global eigenvector,the data set was assigned by criterion of minimum distance.The experimental results show that it is more robust than the conventional clusterings.Characteristics of not sensitive to data dimensions,distribution and number of nature clustering make it have a wide range of applications in clustering VLDS. 展开更多
关键词 clusterING DIVISION PARTITION very large data sets (VLDS)
在线阅读 下载PDF
MSHC:一种多阶段超图聚类算法
3
作者 张春英 王静 +2 位作者 刘璐 兰思武 张庆达 《深圳大学学报(理工版)》 北大核心 2025年第1期68-76,共9页
超图作为普通图的高维推广,能够更加灵活地反映节点间的高阶复杂关系.超图聚类旨在发现超图结构中复杂的高阶关联关系.针对目前超图聚类结果不稳定、容易陷入局部最优等问题,结合超图划分思想,提出一种多阶段超图聚类(multi-stage hyper... 超图作为普通图的高维推广,能够更加灵活地反映节点间的高阶复杂关系.超图聚类旨在发现超图结构中复杂的高阶关联关系.针对目前超图聚类结果不稳定、容易陷入局部最优等问题,结合超图划分思想,提出一种多阶段超图聚类(multi-stage hypergraph clustering,MSHC)算法,该算法将超图聚类过程分为超图约简、超图初始聚类以及优化迁移3个阶段.在超图约简阶段,提出一种不改变超图结构的快速约简方法,降低了后续算法的复杂度;提出基于集对分析理论的超图节点间相似性度量方法,并采用层次聚类方法对超图进行初始聚类,采用4种不同的类簇合并计算方法,增加聚类方案的多样性;将遗传算法应用于优化超图聚类方案的研究中,以此获得最优超图聚类方案.在3个不同规模的数据集上与4个经典的超图聚类方法进行对比实验,结果表明,MSHC算法在Songs_genres数据集和Papers_keywords数据集上超图模块度指数分别提高了0.0797和0.0777,在Movies_genres数据集上仅降低0.0060. 展开更多
关键词 数据处理 超图聚类 遗传算法 集对分析理论 超图约简 多阶段聚类 超图模块度
在线阅读 下载PDF
基于数据驱动期望场景集序列的微电网鲁棒经济调度算法 被引量:2
4
作者 秦海杰 郑鹏远 +2 位作者 王雅琳 徐晓旭 支运婷 《现代电力》 北大核心 2024年第5期886-895,共10页
针对新能源和负荷功率的不确定性,提出基于数据驱动期望场景集序列的微电网鲁棒经济调度算法。通过聚类方法将大量历史场景数据进行聚类处理,形成聚类场景集序列,基于概率缩减为期望场景集序列。日前计划阶段,以任意场景可行作为约束条... 针对新能源和负荷功率的不确定性,提出基于数据驱动期望场景集序列的微电网鲁棒经济调度算法。通过聚类方法将大量历史场景数据进行聚类处理,形成聚类场景集序列,基于概率缩减为期望场景集序列。日前计划阶段,以任意场景可行作为约束条件,以期望场景所对应的微电网运行成本的概率加权指标作为目标函数,通过列约束生成算法对微电网经济调度问题进行求解。日内调度阶段,利用新能源和负荷的测量数据,基于日前计划调度结果对微电网进行再调度,通过对传统能源发电功率和电网交互功率调整进行惩罚,来追踪日前计划调度结果,优选出微电网设备最优出力,提高微电网经济性。仿真案例验证了该方法的有效性。 展开更多
关键词 微电网 数据驱动 聚类 期望场景 期望场景集 列约束生成算法 鲁棒经济调度
在线阅读 下载PDF
半监督的仿射传播聚类 被引量:29
5
作者 王开军 李健 +1 位作者 张军英 涂重阳 《计算机工程》 CAS CSCD 北大核心 2007年第23期197-198,201,共3页
仿射传播聚类算法快速、有效,可以解决大数据集的聚类问题,但当数据的聚类结构比较松散时,聚类准确性不高。该文提出了半监督的仿射传播聚类算法,在迭代过程中嵌入了有效性指标以监督和引导算法向最优聚类结果的方向运行。实验结果表明... 仿射传播聚类算法快速、有效,可以解决大数据集的聚类问题,但当数据的聚类结构比较松散时,聚类准确性不高。该文提出了半监督的仿射传播聚类算法,在迭代过程中嵌入了有效性指标以监督和引导算法向最优聚类结果的方向运行。实验结果表明,该方法对于聚类结构比较紧密和松散的数据集,均可以给出较为准确的聚类结果。 展开更多
关键词 仿射传播聚类 半监督聚类 大数据集的聚类算法
在线阅读 下载PDF
FDBSCAN:一种快速 DBSCAN算法(英文) 被引量:42
6
作者 周水庚 周傲英 +2 位作者 金文 范晔 钱卫宁 《软件学报》 EI CSCD 北大核心 2000年第6期735-744,共10页
聚类分析是一门重要的技术 ,在数据挖掘、统计数据分析、模式匹配和图象处理等领域具有广泛的应用前景 .目前 ,人们已经提出了许多聚类算法 .其中 ,DBSCAN是一种性能优越的基于密度的空间聚类算法 .利用基于密度的聚类概念 ,用户只需输... 聚类分析是一门重要的技术 ,在数据挖掘、统计数据分析、模式匹配和图象处理等领域具有广泛的应用前景 .目前 ,人们已经提出了许多聚类算法 .其中 ,DBSCAN是一种性能优越的基于密度的空间聚类算法 .利用基于密度的聚类概念 ,用户只需输入一个参数 ,DBSCAN算法就能够发现任意形状的类 ,并可以有效地处理噪声 .文章提出了一种加快 DBSCAN算法的方法 .新算法以核心对象邻域中所有对象的代表对象为种子对象来扩展类 ,从而减少区域查询次数 ,降低 I/ O开销 .实验结果表明 ,FDBSCAN能够有效地对大规模数据库进行聚类 ,速度上数倍于 DBSCAN. 展开更多
关键词 大规模数据库 数据挖掘 聚类 快速DBSCAN算法 代表点
在线阅读 下载PDF
基于改进的K-means算法的关联规则数据挖掘研究 被引量:38
7
作者 李珺 刘鹤 朱良宽 《小型微型计算机系统》 CSCD 北大核心 2021年第1期15-19,共5页
关联规则是数据挖掘中的概念,通过分析数据找到数据之间的关联.海量数据会产生大量冗余和相似的关联规则,影响用户对规则的理解和判断.本文采用鸢尾花数据集进行实验.建立三个检验指标,删除冗余关联规则;在进行K-means分析时利用规则产... 关联规则是数据挖掘中的概念,通过分析数据找到数据之间的关联.海量数据会产生大量冗余和相似的关联规则,影响用户对规则的理解和判断.本文采用鸢尾花数据集进行实验.建立三个检验指标,删除冗余关联规则;在进行K-means分析时利用规则产生的三角形迭代选择初始点,再将删除冗余后的规则进行聚类.实验证实本文方法将相似的关联规则归为一簇,能有效的帮助用户迅速找到有用的关联规则,有助于用户更好的对规则进行理解和分析,提高了聚类的效率. 展开更多
关键词 K-MEANS算法 关联规则 聚类算法 鸢尾花数据集
在线阅读 下载PDF
基于新的距离度量的K-Modes聚类算法 被引量:47
8
作者 梁吉业 白亮 曹付元 《计算机研究与发展》 EI CSCD 北大核心 2010年第10期1749-1755,共7页
传统的K-Modes聚类算法采用简单的0-1匹配差异方法来计算同一分类属性下两个属性值之间的距离,没有充分考虑其相似性.对此,基于粗糙集理论,提出了一种新的距离度量.该距离度量在度量同一分类属性下两个属性值之间的差异时,克服了简单0-... 传统的K-Modes聚类算法采用简单的0-1匹配差异方法来计算同一分类属性下两个属性值之间的距离,没有充分考虑其相似性.对此,基于粗糙集理论,提出了一种新的距离度量.该距离度量在度量同一分类属性下两个属性值之间的差异时,克服了简单0-1匹配差异法的不足,既考虑了它们本身的异同,又考虑了其他相关分类属性对它们的区分性.并将提出的距离度量应用于传统K-Modes聚类算法中.通过与基于其他距离度量的K-Modes聚类算法进行实验比较,结果表明新的距离度量是更加有效的. 展开更多
关键词 聚类算法 分类属性数据 粗糙集 粗糙隶属度 距离度量
在线阅读 下载PDF
基于最小包含球的大数据集快速谱聚类算法 被引量:16
9
作者 钱鹏江 王士同 +1 位作者 邓赵红 徐华 《电子学报》 EI CAS CSCD 北大核心 2010年第9期2035-2041,共7页
GRC(Graph-based Relaxed Clustering)是一种具有便捷性和自适应性的谱聚类算法,但对于大数据集,繁重的时间开销限制了其实用性.针对此不足,该文通过对GRC聚类指示向量进行约束并融合中心约束型最小包含球(Center-Constrained Minimal E... GRC(Graph-based Relaxed Clustering)是一种具有便捷性和自适应性的谱聚类算法,但对于大数据集,繁重的时间开销限制了其实用性.针对此不足,该文通过对GRC聚类指示向量进行约束并融合中心约束型最小包含球(Center-Constrained Minimal Enclosing Ball,CCMEB)理论提出了大数据集快速谱聚类算法CCMEB-CGRC.该算法继承GRC的便捷性和自适应性的同时又具有渐近线性时间复杂度的优点,从而较好地解决了大数据集快速有效谱聚类的问题.仿真实验的结果验证了该算法的有效性和快速性. 展开更多
关键词 谱聚类 大数据集 最小包含球 线性时间复杂度
在线阅读 下载PDF
基于数据取样的DBSCAN算法 被引量:27
10
作者 周水庚 范晔 周傲英 《小型微型计算机系统》 EI CSCD 北大核心 2000年第12期1270-1274,共5页
聚类是数据挖掘领域中的一个重要研究课题 .聚类技术在许多领域有着广泛的应用 .基于密度的聚类算法DBSCAN是一种有效的空间聚类算法 ,它能够发现任意形状的类并且有效地处理噪声 ,用户只需输入一个参数就可以进行聚类分析 .但是 ,DBSCA... 聚类是数据挖掘领域中的一个重要研究课题 .聚类技术在许多领域有着广泛的应用 .基于密度的聚类算法DBSCAN是一种有效的空间聚类算法 ,它能够发现任意形状的类并且有效地处理噪声 ,用户只需输入一个参数就可以进行聚类分析 .但是 ,DBSCAN算法在对大规模空间数据库进行聚类分析时需要较大的内存支持和 I/ O消耗 .本文在分析 DBSCAN算法不足的基础上 ,提出一种基于数据取样的 DBSCAN算法 ,使之能够有效地处理大规模空间数据库 .二维空间数据测试结果表明本文算法是可行、有效的 . 展开更多
关键词 空间数据库 数据挖掘 DBSCAN算法 数据取样
在线阅读 下载PDF
基于分治法的高维大数据集模糊聚类算法 被引量:5
11
作者 王宝文 阎俊梅 +1 位作者 刘文远 石岩 《计算机工程》 CAS CSCD 北大核心 2007年第24期60-62,共3页
将高维的大数据集随机分成若干个子集,对每个子集聚类采用一种基于遗传算法的高维数据模糊聚类方法。该方法引入了一个模糊非相似矩阵来表示高维样本之间的非相似程度,并将高维样本随机初始化到二维平面,利用遗传算法迭代优化二维样本... 将高维的大数据集随机分成若干个子集,对每个子集聚类采用一种基于遗传算法的高维数据模糊聚类方法。该方法引入了一个模糊非相似矩阵来表示高维样本之间的非相似程度,并将高维样本随机初始化到二维平面,利用遗传算法迭代优化二维样本的坐标值,实现二维样本之间的欧氏距离向样本间的模糊非相似度的趋近。将得到的最优的二维样本用模糊C-均值聚类(FCM)算法聚类,克服了聚类有效性对高维样本空间分布的依赖。实验仿真表明,该算法有较好的聚类效果,且极大地提高了聚类的速度。 展开更多
关键词 模糊聚类 分治法 遗传算法 模糊非相似矩阵 大数据集 高维
在线阅读 下载PDF
一种聚簇消减大规模数据的支持向量分类算法 被引量:10
12
作者 陈光喜 徐健 成彦 《计算机科学》 CSCD 北大核心 2009年第3期184-188,共5页
针对支持向量分类机对大规模数据集训练速度慢的瓶颈,提出一种聚簇消减数据集方法。首先建立样本中心距离函数,计算聚簇集的比例半径,然后利用聚簇集镜像扫描样本点确定簇集类,同一类样本特性的聚簇集中只保留代表样本点,建立异类点删... 针对支持向量分类机对大规模数据集训练速度慢的瓶颈,提出一种聚簇消减数据集方法。首先建立样本中心距离函数,计算聚簇集的比例半径,然后利用聚簇集镜像扫描样本点确定簇集类,同一类样本特性的聚簇集中只保留代表样本点,建立异类点删除矩阵,通过上述方法消减样本集。证明了这种簇消减算法有较低的时间复杂度,并利用实验说明了保留代表点的有效意义。最后通过随机数据和UCI标准数据库验证了算法在保证分类精度的同时提高了分类速度。 展开更多
关键词 支持向量机 聚簇集 大规模数据集 训练速度
在线阅读 下载PDF
一种基于加速迭代的大数据集谱聚类方法 被引量:7
13
作者 陈丽敏 杨静 张健沛 《计算机科学》 CSCD 北大核心 2012年第5期172-176,共5页
传统谱聚类算法的诸多优点只适合小数据集。根据Laplacian矩阵的特点重新构造新的Gram矩阵,输入新构造矩阵的若干列,然后利用加速迭代法解决大数据集的谱聚类特征提取问题,使得在大数据集条件下,谱聚类算法只需要很小的空间复杂度就可... 传统谱聚类算法的诸多优点只适合小数据集。根据Laplacian矩阵的特点重新构造新的Gram矩阵,输入新构造矩阵的若干列,然后利用加速迭代法解决大数据集的谱聚类特征提取问题,使得在大数据集条件下,谱聚类算法只需要很小的空间复杂度就可达到非常快的计算速度。 展开更多
关键词 聚类 谱聚类 大规模数据集 加速迭代法 LAPLACIAN矩阵
在线阅读 下载PDF
一种建立粗糙数据模型的监督模糊聚类方法 被引量:12
14
作者 黄金杰 李士勇 蔡云泽 《软件学报》 EI CSCD 北大核心 2005年第5期744-753,共10页
提出了在输入-输出积空间中利用监督模糊聚类技术快速建立粗糙数据模型(rough data model,简称RDM)的一种方法.该方法将RDM模型的分类质量性能指标与具有良好特性的Gustafson-Kessel(G-K)聚类算法结合在一起,并通过引入数据对模糊类的... 提出了在输入-输出积空间中利用监督模糊聚类技术快速建立粗糙数据模型(rough data model,简称RDM)的一种方法.该方法将RDM模型的分类质量性能指标与具有良好特性的Gustafson-Kessel(G-K)聚类算法结合在一起,并通过引入数据对模糊类的推定隶属度的概念,给出了将模糊聚类模型转化为粗糙数据模型的方法,从而设计出一种通过迭代计算使目标函数最小的两个必要条件方程来获取RDM模型的有效算法,将Kowalczyk方法的多维搜索过程变为以聚类数目为参数的一维搜索,极大地减少了寻优时间.与传统的粗糙集理论和Kowalczyk方法相比,提出的方法具有更好的数据概括能力和噪声数据处理能力.最后,通过不同的数据集实验测试,结果表明了该方法的有效性. 展开更多
关键词 粗糙数据模型 粗糙集 监督模糊聚类 GK算法 推定隶属度
在线阅读 下载PDF
不均衡数据集文本分类中少数类样本生成方法研究 被引量:5
15
作者 杜娟 姜丽丽 陈红丽 《计算机应用研究》 CSCD 北大核心 2009年第10期3731-3734,共4页
针对传统的分类算法在处理不均衡样本数据时,其分类器预测倾向于多数类,少数类分类误差大,提出了一种基于聚类和遗传算法的样本生成方法。先通过K-means算法将少数类样本聚类分组;再在每个聚类的内部使用遗传交叉和变异操作获取新样本,... 针对传统的分类算法在处理不均衡样本数据时,其分类器预测倾向于多数类,少数类分类误差大,提出了一种基于聚类和遗传算法的样本生成方法。先通过K-means算法将少数类样本聚类分组;再在每个聚类的内部使用遗传交叉和变异操作获取新样本,并进行有效性验证;最后使用原始数据集和新数据集分别训练K最近邻(Knearestneighbor,KNN)及支持向量机(supportvector machine,SVM)分类器。实验结果表明此方法有效改善了少数类分类效果。 展开更多
关键词 不均衡数据集 分类 聚类 遗传算法 样本生成
在线阅读 下载PDF
基于初始聚类中心优化和维间加权的改进K-means算法 被引量:7
16
作者 王越 王泉 +1 位作者 吕奇峰 曾晶 《重庆理工大学学报(自然科学)》 CAS 2013年第4期77-80,共4页
针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-m... 针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。 展开更多
关键词 聚类 K—means算法 初始聚类中心 维间加权 Iris数据集
在线阅读 下载PDF
快速核密度估计定理和大规模图论松弛聚类方法 被引量:5
17
作者 钱鹏江 王士同 邓赵红 《自动化学报》 EI CSCD 北大核心 2011年第12期1422-1434,共13页
首先证明了快速核密度估计(Fast kernel density estimate,FKDE)定理:基于抽样子集的高斯核密度估计(KDE)与原数据集的KDE间的误差与抽样容量和核参数相关,而与总样本容量无关.接着本文揭示了基于高斯核形式的图论松弛聚类(Graph-based ... 首先证明了快速核密度估计(Fast kernel density estimate,FKDE)定理:基于抽样子集的高斯核密度估计(KDE)与原数据集的KDE间的误差与抽样容量和核参数相关,而与总样本容量无关.接着本文揭示了基于高斯核形式的图论松弛聚类(Graph-based relaxed clustering,GRC)算法的目标表达式可分解成"Parzen窗加权和+平方熵"的形式,即此时GRC可视作一个核密度估计问题,这样基于KDE近似策略,本文提出了大规模图论松弛聚类方法(Scaling up GRC by KDEapproximation,SUGRC-KDEA).较之先前的工作,这一方法的优势在于为GRC作用于大规模数据集提供了更简单和易于实现的方案. 展开更多
关键词 核密度估计 大规模数据集 聚类 抽样子集
在线阅读 下载PDF
基于信誉度集对分析的WSN安全数据融合 被引量:6
18
作者 马守明 王汝传 叶宁 《计算机研究与发展》 EI CSCD 北大核心 2011年第9期1652-1658,共7页
由于无线传感器网络存在资源约束问题,为了有效地减少无线传感器网络中的数据传输量以降低网络的总能耗,同时确保对感知数据进行融合操作的安全性,提出了一种基于传感器节点信誉度集对分析的安全数据融合方法.在节点分簇阶段,利用基于... 由于无线传感器网络存在资源约束问题,为了有效地减少无线传感器网络中的数据传输量以降低网络的总能耗,同时确保对感知数据进行融合操作的安全性,提出了一种基于传感器节点信誉度集对分析的安全数据融合方法.在节点分簇阶段,利用基于密度函数的减法聚类方法进行分簇,既获得了较快的分簇速度,又保证了簇头节点地理位置的合理分布,使得分簇规模更加符合节点的实际布设情况.在数据传输阶段,将簇头节点选择下一跳数据转发节点建模为多属性决策过程,综合考虑备选转发节点的信誉度、能量等属性信息,从中选择综合评价最优的簇头节点转发融合数据,不仅使网络中的数据流量分布更加均衡而且保证了数据的安全性.仿真结果表明,提出的数据融合算法在融合精度、安全性及簇头节点能耗方面与同类的LEACH算法和BTSR算法相比具有明显的优势. 展开更多
关键词 无线传感器网络 分簇算法 数据融合 信誉度 集对分析
在线阅读 下载PDF
自动识别多期断层擦痕的一种应力反演算法 被引量:4
19
作者 单业华 李志安 林舸 《地球学报》 EI CAS CSCD 北大核心 2003年第2期181-186,共6页
由于地质历史上构造应力场的演变 ,多期断层擦痕数据的存在是应力反演所面临的普遍性问题。以往提出处理多期断层擦痕的应力反演算法都基于硬划分 ,忽视了数据自身的不确定性 ,并且一些只是传统的、处理一期断层擦痕的算法的简单延拓。... 由于地质历史上构造应力场的演变 ,多期断层擦痕数据的存在是应力反演所面临的普遍性问题。以往提出处理多期断层擦痕的应力反演算法都基于硬划分 ,忽视了数据自身的不确定性 ,并且一些只是传统的、处理一期断层擦痕的算法的简单延拓。在Fry (1999)的sigma空间里 ,同期断层擦痕向量具有统一的线性分布趋势 ,多期断层擦痕向量具有不同的线性分布趋势。在此基础上 ,本文提出利用模糊线性聚类法来识别多期断层擦痕向量的线性结构。这种算法不仅可以弥补以往算法的上述缺陷 ,还具有自动、直接、有效 。 展开更多
关键词 多期断层擦痕 模糊聚类 构造应力场 古应力 线性分布趋势 断层活动
在线阅读 下载PDF
面向大规模数据快速聚类K-means算法的研究 被引量:17
20
作者 郭占元 林涛 《计算机应用与软件》 2017年第5期43-47,53,共6页
为进一步提高K-means算法对大规模数据聚类的效率,结合MapReduce计算模型,提出一种先利用Hash函数进行样本抽取,再利用Pam算法获取初始中心的并行聚类方法。通过Hash函数抽取的样本能充分反映数据的统计特性,使用Pam算法获取初始聚类中... 为进一步提高K-means算法对大规模数据聚类的效率,结合MapReduce计算模型,提出一种先利用Hash函数进行样本抽取,再利用Pam算法获取初始中心的并行聚类方法。通过Hash函数抽取的样本能充分反映数据的统计特性,使用Pam算法获取初始聚类中心,改善了传统聚类算法依赖初始中心的问题。实验结果表明该算法有效提高了聚类质量和执行效率,适用于对大规模数据的聚类分析。 展开更多
关键词 大规模数据 聚类算法 MAPREDUCE Hash样本抽样 PAM算法
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部