Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved c...Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved computing and storage. Management has become easier, andOAM costs have been significantly reduced. Cloud desktop technology is develop ing rapidly. With this technology, users can flexibly and dynamically use virtual ma chine resources, companies' efficiency of using and allocating resources is greatly improved, and information security is ensured. In most existing virtual cloud desk top solutions, computing and storage are bound together, and data is stored as im age files. This limits the flexibility and expandability of systems and is insufficient for meetinz customers' requirements in different scenarios.展开更多
Despite the multifaceted advantages of cloud computing,concerns about data leakage or abuse impedes its adoption for security-sensi tive tasks.Recent investigations have revealed that the risk of unauthorized data acc...Despite the multifaceted advantages of cloud computing,concerns about data leakage or abuse impedes its adoption for security-sensi tive tasks.Recent investigations have revealed that the risk of unauthorized data access is one of the biggest concerns of users of cloud-based services.Transparency and accountability for data managed in the cloud is necessary.Specifically,when using a cloudhost service,a user typically has to trust both the cloud service provider and cloud infrastructure provider to properly handling private data.This is a multi-party system.Three particular trust models can be used according to the credibility of these providers.This pa per describes techniques for preventing data leakage that can be used with these different models.展开更多
Cloud computing can significantly improve efficiency in Internet utilization and data management.Several cloud applications(file sharing,backup,data up/download etc.) imply transfers of large amount of data without re...Cloud computing can significantly improve efficiency in Internet utilization and data management.Several cloud applications(file sharing,backup,data up/download etc.) imply transfers of large amount of data without real-time requirements.In several use-cases cloud-computing solutions reduce operational costs and guarantee target QoS.These solutions become critical when satellite systems are utilized,since resources are limited,network latency is huge and bandwidth costs are high.Using satellite capacity for cloud-computing bulk traffic,keeping acceptable performance of interactive applications,is very important and can limit the connectivity costs.This goal can be achieved installing in the Set Top Box(STB) a proxy agent,to differentiate traffic and assign bandwidth according to priority,leaving spare capacity to bulk cloud computing traffic.This aim is typically reached using a specific QoS architecture,adding functional blocks at network or lower layers.We propose to manage such a process at transport layer only.The endpoint proxy implements a new transport protocol called TCP Noordwijk+,introducing a flow control differentiation capability.The proxy includes TPCN+ which efficiently transfers low-priority bulk data and handles interactive data,keeping a high degree of friendliness.The outcomes of Ns-2simulations confirm applicability and good performance of the proposed solution.展开更多
Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logi...Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main applications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and handling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle terminals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of intelligent logistics cloud platform containing software layer(SaaS), platform layer(PaaS) and infrastructure(IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, heterogeneous terminal data access, encapsulation and data mining. Therefore, intelligent logistics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-winlogistics ecological system and the benign development of the ICT industry in the trend of intellectualization in China.展开更多
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap...With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.展开更多
文摘Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved computing and storage. Management has become easier, andOAM costs have been significantly reduced. Cloud desktop technology is develop ing rapidly. With this technology, users can flexibly and dynamically use virtual ma chine resources, companies' efficiency of using and allocating resources is greatly improved, and information security is ensured. In most existing virtual cloud desk top solutions, computing and storage are bound together, and data is stored as im age files. This limits the flexibility and expandability of systems and is insufficient for meetinz customers' requirements in different scenarios.
基金supported by National Basic Research (973) Program of China (2011CB302505)Natural Science Foundation of China (61373145, 61170210)+1 种基金National High-Tech R&D (863) Program of China (2012AA012600,2011AA01A203)Chinese Special Project of Science and Technology (2012ZX01039001)
文摘Despite the multifaceted advantages of cloud computing,concerns about data leakage or abuse impedes its adoption for security-sensi tive tasks.Recent investigations have revealed that the risk of unauthorized data access is one of the biggest concerns of users of cloud-based services.Transparency and accountability for data managed in the cloud is necessary.Specifically,when using a cloudhost service,a user typically has to trust both the cloud service provider and cloud infrastructure provider to properly handling private data.This is a multi-party system.Three particular trust models can be used according to the credibility of these providers.This pa per describes techniques for preventing data leakage that can be used with these different models.
文摘Cloud computing can significantly improve efficiency in Internet utilization and data management.Several cloud applications(file sharing,backup,data up/download etc.) imply transfers of large amount of data without real-time requirements.In several use-cases cloud-computing solutions reduce operational costs and guarantee target QoS.These solutions become critical when satellite systems are utilized,since resources are limited,network latency is huge and bandwidth costs are high.Using satellite capacity for cloud-computing bulk traffic,keeping acceptable performance of interactive applications,is very important and can limit the connectivity costs.This goal can be achieved installing in the Set Top Box(STB) a proxy agent,to differentiate traffic and assign bandwidth according to priority,leaving spare capacity to bulk cloud computing traffic.This aim is typically reached using a specific QoS architecture,adding functional blocks at network or lower layers.We propose to manage such a process at transport layer only.The endpoint proxy implements a new transport protocol called TCP Noordwijk+,introducing a flow control differentiation capability.The proxy includes TPCN+ which efficiently transfers low-priority bulk data and handles interactive data,keeping a high degree of friendliness.The outcomes of Ns-2simulations confirm applicability and good performance of the proposed solution.
基金supported in part by National Key Research and Development Program under Grant No. 2016YFC0803206China Postdoctoral Science Foundation under Grant No.2016M600972
文摘Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main applications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and handling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle terminals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of intelligent logistics cloud platform containing software layer(SaaS), platform layer(PaaS) and infrastructure(IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, heterogeneous terminal data access, encapsulation and data mining. Therefore, intelligent logistics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-winlogistics ecological system and the benign development of the ICT industry in the trend of intellectualization in China.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2013RC0114111 Project of China under Grant No.B08004
文摘With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.