To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this...To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.展开更多
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m...An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system.展开更多
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d...The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.展开更多
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o...Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases.展开更多
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d...A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process.展开更多
对于广域网下的文件传输和管理,云存储系统提供Web Service API、基于文件的API、基于Block的API和其他的API,通常需要在客户端安装特定程序调用这些API实现云存储功能,测试发现如果多人同时访问,传输文件失败率较高。设计了基于Web Ser...对于广域网下的文件传输和管理,云存储系统提供Web Service API、基于文件的API、基于Block的API和其他的API,通常需要在客户端安装特定程序调用这些API实现云存储功能,测试发现如果多人同时访问,传输文件失败率较高。设计了基于Web Service、HTTP和Flash技术的文件传输协议VCFTP,开发了基于虚拟主机集群的云存储系统VCloudStorage。首先建立SaaS服务模型,利用HTTP数据流存储技术,建立虚拟主机存储接口;接着建立虚拟主机传输能力、存储能力和价格能力数学模型,结合用户的传输请求建立文件传输整数规划数学模型及最优化算法,最终以此为基础设计了文件传输控制协议VCFTP。VCFTP利用Flash跨平台和富客户端技术特点,无需在客户端部署其他程序;授权的用户根据传输请求、存储要求、服务水平和当前虚拟主机状态等条件,以传输能力最优化的方式进行文件传输。实验结果表明VCFTP具有较高的性能和稳定性,VCloudStorage总吞吐量、平均传输率和文件传输成功率均优于微软SkyDrive存储、腾讯QQ邮箱存储和单虚拟主机存储。本文提出的VCFTP增强了文件传输性能和稳定性,是提高广域网网络存储系统性能的一条有效途径。展开更多
基金Project(06JJ50110) supported by the Natural Science Foundation of Hunan Province, China
文摘To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsWork(2010-0020163) supported by Priority Research Centers Program through the National Research Foundation (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system.
文摘The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.
基金supported by the National Natural Science Foundation of China(61401363)the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation(20155153034)+1 种基金the Fundamental Research Funds for the Central Universities(3102016AXXX0053102015BJJGZ009)
文摘Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases.
基金supported by Chiang Mai University Research Fund under the contract number T-M5744
文摘A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process.
文摘随着算力网络中计算资源与虚拟化设备的广泛应用,在算力网络虚拟化中,针对云集群弹性伸缩策略基于阈值的响应式触发过程中存在的弹性滞后问题,提出一种基于Transformer的预测式云集群资源弹性伸缩方法(Predictive Cloud Cluster Resource Elastic Scaling Method Based on Transformer,Cloudformer).该方法利用序列分解模块将云集群数据分解为趋势项和季节项,趋势项采用双系数网络分别对输入空间预测的均值和方差进行归一化和反归一化,季节项采用融合傅里叶变换的频域自注意力模型进行预测,并在模型训练过程中使用指数移动平均模型动态调整训练损失的误差范围.实验结果表明,对比最先进的五种预测式弹性伸缩算法,本文所提出的方法在保持较低的模型训练和推理时间下,不同预测窗口单变量与多变量预测均方误差分别降低了10.07%和10.01%.
文摘对于广域网下的文件传输和管理,云存储系统提供Web Service API、基于文件的API、基于Block的API和其他的API,通常需要在客户端安装特定程序调用这些API实现云存储功能,测试发现如果多人同时访问,传输文件失败率较高。设计了基于Web Service、HTTP和Flash技术的文件传输协议VCFTP,开发了基于虚拟主机集群的云存储系统VCloudStorage。首先建立SaaS服务模型,利用HTTP数据流存储技术,建立虚拟主机存储接口;接着建立虚拟主机传输能力、存储能力和价格能力数学模型,结合用户的传输请求建立文件传输整数规划数学模型及最优化算法,最终以此为基础设计了文件传输控制协议VCFTP。VCFTP利用Flash跨平台和富客户端技术特点,无需在客户端部署其他程序;授权的用户根据传输请求、存储要求、服务水平和当前虚拟主机状态等条件,以传输能力最优化的方式进行文件传输。实验结果表明VCFTP具有较高的性能和稳定性,VCloudStorage总吞吐量、平均传输率和文件传输成功率均优于微软SkyDrive存储、腾讯QQ邮箱存储和单虚拟主机存储。本文提出的VCFTP增强了文件传输性能和稳定性,是提高广域网网络存储系统性能的一条有效途径。