Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF plan...A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF planar platform was established based on slippery course and bearing, and dSPACE real-time control system was used to perform the platform's motion control experiment on robot. Based on the kinematic equation and mechanical balance equation of moving platform, the stiffness of the robot system was analyzed and the calibration scheme of the system considering wire tension was put forward. Position servo control experiments were carried out, position servo tracking precision was analyzed, and real-time wire tension was detected. The results show that the moving error of the moving platform tracking is small (the maximum difference is about 3%), and the rotation error is large (the maximum difference is about 12%). The wire tension has wave properties (the wire tension fluctuation is about 10 N).展开更多
The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees...The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.展开更多
The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The positi...The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet.展开更多
Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against da...Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against damages attributable to shock and vibration in order to have better magnetic read/write performance. In the present work, a LPC and its HDD are modeled as two degrees of freedom system and the nonlinear optimization method is employed to perform a passive control through minimizing peak of HDD absolute acceleration caused by a base shock excitation. The presented shock excitation is considered as half-sine pulse of acceleration. In addition, eleven inequality constraints are defined based on geometrical limitations and allowable intervals of lumped modal parameters. The target of the optimization is to reach optimum modal parameters of rubber mounts and rubber feet as design variables and subsequently propose new characteristics of rubber mounts and rubber feet to be manufactured for the HDD protection against shock excitation. The genetic algorithm and the modified constrained steepest descent algorithm are employed in order to solve the nonlinear optimization problem for three widely-used commercial cases of HDD. Finally, the results of both optimization methods are compared to make sure about their accuracy.展开更多
Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the craw...Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the crawler. However, there are still some problems crying out for solutions in superior turning mechanism for vehicle engineering area. Composition and performance of turning system in agricultural tracked vehicles matched with twin driving differential turning mechanism was introduced, which adopted quiet hydraulic double pumps and double motors, took advantage of flexibility greatly for track vehicle turning and benefit for handling used steering wheel.展开更多
Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permane...Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permanent magnet (IPM) synchronous motor was brought forward by using finite element analysis. And its control strategy based on the largest running capability was studied also. The experiment results for a scale model show that the modelling method improves the model's accuracy, and the motor's control strategy is effective.展开更多
A method is presented to control the vibration of high-speed cannonball transport mechanism due to the reduction of its weight, which adhere a nonlinear Zn-27Al-1Cu damping alloy layer and a constraint layer partly to...A method is presented to control the vibration of high-speed cannonball transport mechanism due to the reduction of its weight, which adhere a nonlinear Zn-27Al-1Cu damping alloy layer and a constraint layer partly to the part of mechanism driven by impact. Based on the equivalent viscous damping theory and using curve fitting to describe the rule of the dissipation factor of damping alloy changing with stress, the nonlinear constitutive relation of Zn-27Al-1Cu damping alloy is given. The nonlinear spring damping contact model is adopted to describe the contact force of the clearance joint.Based on the nonlinear finite element contact theory, the outer impact contact force between the mechanism and its working environment is analyzed, and a coupled dynamic model of structural impact and mechanism motion with clearance joint is put forward. A dynamic model is established for the cannonball transport mechanism partly adhering Zn-27Al-1Cu damping alloy layer and constraint layer under complex impact conditions. At last, the feasibility of the method presented is proved by numerical simulation.展开更多
With the advantage of exceptional long-range traffic perception capabilities and data fusion computational prowess,the cloud control system(CCS)has exhibited formidable poten-tial in the realm of connected assisted dr...With the advantage of exceptional long-range traffic perception capabilities and data fusion computational prowess,the cloud control system(CCS)has exhibited formidable poten-tial in the realm of connected assisted driving,such as the adap-tive cruise control(ACC).Based on the CCS architecture,this paper proposes a cloud-based predictive ACC(PACC)strategy,which fully considers the road slope information and the preced-ing vehicle status.In the cloud,based on the dynamic program-ming(DP),the long-term economic speed planning is carried out by using the slope information.At the vehicle side,the real-time fusion planning of the economic speed and the preceding vehi-cle state is realized based on the model predictive control(MPC),taking into account the safety and economy of driving.In order to ensure the safety and stability of the vehicle-cloud cooperative control system,an event-triggered cruise mode switching method is proposed based on the state of each sub-system of the vehicle-cloud-network-map.Simulation results indicate that the PACC system can still ensure stable cruising under delays and some complex conditions.Moreover,under normal conditions,compared to the ACC system,the PACC sys-tem can further improve economy while ensuring safety and improve the overall energy efficiency of the vehicle,thus achiev-ing fuel savings of 3%to 8%.展开更多
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
基金Project(20102304120007) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(QC2010009)supported by the Natural Science Foundation of Heilongjiang Province, China+1 种基金Projects(20110491030, LBH-Z10219) supported by China Postdoctoral Science FoundationProject(HEUCF120706) supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF planar platform was established based on slippery course and bearing, and dSPACE real-time control system was used to perform the platform's motion control experiment on robot. Based on the kinematic equation and mechanical balance equation of moving platform, the stiffness of the robot system was analyzed and the calibration scheme of the system considering wire tension was put forward. Position servo control experiments were carried out, position servo tracking precision was analyzed, and real-time wire tension was detected. The results show that the moving error of the moving platform tracking is small (the maximum difference is about 3%), and the rotation error is large (the maximum difference is about 12%). The wire tension has wave properties (the wire tension fluctuation is about 10 N).
基金Project(2013ZX04008011)supported by the National Science and Technology Major Projects of ChinaProject(51675100)supported by the National Natural Science Foundation of China
文摘The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject supported by the Program for Zhejiang Leading Team of S&T Innovation,China
文摘The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet.
文摘Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against damages attributable to shock and vibration in order to have better magnetic read/write performance. In the present work, a LPC and its HDD are modeled as two degrees of freedom system and the nonlinear optimization method is employed to perform a passive control through minimizing peak of HDD absolute acceleration caused by a base shock excitation. The presented shock excitation is considered as half-sine pulse of acceleration. In addition, eleven inequality constraints are defined based on geometrical limitations and allowable intervals of lumped modal parameters. The target of the optimization is to reach optimum modal parameters of rubber mounts and rubber feet as design variables and subsequently propose new characteristics of rubber mounts and rubber feet to be manufactured for the HDD protection against shock excitation. The genetic algorithm and the modified constrained steepest descent algorithm are employed in order to solve the nonlinear optimization problem for three widely-used commercial cases of HDD. Finally, the results of both optimization methods are compared to make sure about their accuracy.
基金Supported by Postdoctoral Fund of Settling Down in Heilongjiang Province(LBH-Q06094)
文摘Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the crawler. However, there are still some problems crying out for solutions in superior turning mechanism for vehicle engineering area. Composition and performance of turning system in agricultural tracked vehicles matched with twin driving differential turning mechanism was introduced, which adopted quiet hydraulic double pumps and double motors, took advantage of flexibility greatly for track vehicle turning and benefit for handling used steering wheel.
文摘Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permanent magnet (IPM) synchronous motor was brought forward by using finite element analysis. And its control strategy based on the largest running capability was studied also. The experiment results for a scale model show that the modelling method improves the model's accuracy, and the motor's control strategy is effective.
基金Sponsored by National Natural Science Foundation of China(50075068)Chang'an University Science Foundation(0305-1001).
文摘A method is presented to control the vibration of high-speed cannonball transport mechanism due to the reduction of its weight, which adhere a nonlinear Zn-27Al-1Cu damping alloy layer and a constraint layer partly to the part of mechanism driven by impact. Based on the equivalent viscous damping theory and using curve fitting to describe the rule of the dissipation factor of damping alloy changing with stress, the nonlinear constitutive relation of Zn-27Al-1Cu damping alloy is given. The nonlinear spring damping contact model is adopted to describe the contact force of the clearance joint.Based on the nonlinear finite element contact theory, the outer impact contact force between the mechanism and its working environment is analyzed, and a coupled dynamic model of structural impact and mechanism motion with clearance joint is put forward. A dynamic model is established for the cannonball transport mechanism partly adhering Zn-27Al-1Cu damping alloy layer and constraint layer under complex impact conditions. At last, the feasibility of the method presented is proved by numerical simulation.
基金supported by the National Key R&D Program of China(2021YFB2501000)the Consultancy Research Project on the Strategic Study of the Integration and Innovative Development of Intelligent Connected Vehicles and New Energy Ecology in Zhejiang Province(2023ZL0007)+1 种基金the Hetao Shenzhen-HongKong Science and Technology Innovation Cooperation Zone(HZQB-KCZYZ-2021055)the Open Project of the Key Laboratory of Modern Measurement and Control Technology of the Ministry of Education(KF2022-1123202).
文摘With the advantage of exceptional long-range traffic perception capabilities and data fusion computational prowess,the cloud control system(CCS)has exhibited formidable poten-tial in the realm of connected assisted driving,such as the adap-tive cruise control(ACC).Based on the CCS architecture,this paper proposes a cloud-based predictive ACC(PACC)strategy,which fully considers the road slope information and the preced-ing vehicle status.In the cloud,based on the dynamic program-ming(DP),the long-term economic speed planning is carried out by using the slope information.At the vehicle side,the real-time fusion planning of the economic speed and the preceding vehi-cle state is realized based on the model predictive control(MPC),taking into account the safety and economy of driving.In order to ensure the safety and stability of the vehicle-cloud cooperative control system,an event-triggered cruise mode switching method is proposed based on the state of each sub-system of the vehicle-cloud-network-map.Simulation results indicate that the PACC system can still ensure stable cruising under delays and some complex conditions.Moreover,under normal conditions,compared to the ACC system,the PACC sys-tem can further improve economy while ensuring safety and improve the overall energy efficiency of the vehicle,thus achiev-ing fuel savings of 3%to 8%.